
Leiden University
Leiden Institute for Advanced Computer Science

Concepts of Programming Languages
F. Arbab
Final Exam

13 January 2017

Student name:

Student number

This exam consists of 7 pages and L4 questions, for a total of 110
points. Question 14 is a bonus question, for 10 points. If you score ,t
points in this exam, your final exam grade will be calculated as r out
of LO0.

fnstructions:

o Write your name and student number on this hand-out.

o Verify that your copy of this hand-out is complete and legible.

¡ This is a closed-book, closed-notes, individual exam.

o You are not allowed to use your laptop, phone, or anv other computing or
telecommunication device.

o You can work on this exam only within the allocated time-slot.

o Do not unstaple or tear off pages of this hand-out.

o Do not write your answers on this hand-out.

o You must return all pages of this hand-out to the proctor at the end of
the exam, regardless of whether or not you have written anything on it.

1



1. Consider the following grammar, with <S> as its distinguished symbol:

<S>-><S>r.<S>lxlylz

(u) (S points) Prove that this grammar is ambiguous.

(b) (4 points) Give an unambiguous grammar whose language is the
same as that of the above grammar.

2. (3 points) Precisely describe in simple English the language of the fol-
lowing grammar, with <S> as its distinguished symbol:

<s> -> <s1><s2>
<S1> -> ab I a<S1>b
<S2> -> bc I b<S2>c

3. Compute the weakest pre-condition for each of the following program frag-
ments and its given post-condition:

(u) (r point) a = 4 * b - 6 {a = ro}
(b) (2 points) a = 3 * (b + a); b = a - 2 {b = 10}

(") (s points)

b=8;
if (a>b)
thenb=a-2
elseb=a+2
fi;
{b>5}

(d) (4 points)

y--4*c;
if(Y>=0)
then z = sqrt(y); a = - z / 2; b = z / 2
fi
{"=3,b=-3}

4. (") (Z points) Consider the following declarations in Ada:
type DerivedSnalllnt j-s neqr Integer rânge 1..100;
type SubrangeSnalllnt is fnteger range 1..100;

Explain what the derived type DerivedSmallInt and the subtype
SubrangeSnallfnt have in cornmon and what, if arrything, makes
them different.

2



(") (S points) This programming language exclusively uses static scop-
ing.

(b) (3 points) This programming language exclusively uses dynamic
scoping.

6. (2 points) Character strings can be implemented either as an array of
characters together with an integer that specifies its length (as in Pascal),
or as a sequence of characters with a terminator character at the end (as

in C). Describe the main advantages and disadvantages of each scheme.

7. (4 points) Explain two common methods used to reclaim memory allo-
cated to dynamically allocated variables that are no longer needed.

8. (10 points) Write a Scheme program that finds the maximum element
in a non-empty list of numbers.

9. (10 points) 'Write a Prolog program leq(L1 , L2) that returns true only
if L1 and L2 are fully insta^ntiated lists with identical (nested list) struc-
tures, and every element in Ll is less than or equal to its corresponding
element in L2.

10. Consider the following Scheme program:

(define (e a b)
(cond

(,(and (not (list? a) ) (not (list?
((and (list? a) (list? b))

(cond
((nu11? a) (nu11? b))
((nu11? b) #F)
((e (car a) (car b)) (e (cdr a)
(else #F)

)
)
(e1se #F)

)
)

b))) (> a b))

(cdr b)))

(u) (Z points) What type of pararneters are acceptable irr a call to e?

(b) (8 points) Explain succinctly what this program does with a call to
e with every appropriate combination of types of parameters.

4



11. (1"0 points) Consider the following Ada program:

task ïaskA is
entry Reql(ften

end TaskA;

task body TaskA is
begin

loop
accept Reql(lten

-- process ïten
end Reql;

end loop;
end TaskA;

in fnteger);
task TaskB;

task body TaskB is
begin

loop
-- produce a Ne¡¡Iten
TaskA. Reql (NewIten) ;

-- do other things
end loop;

end TaskB;

in fnteger) do

Implement the same concurrent behavior of the two tasks TaskA and TaskB
in a C-like language using semaphores. Assume Senaphore x declares
variable x as an initiallv unlocked binary semaphore, arrd lock(x) and
unlock(x) lock and unlock x, respectively.

12. Consider the following Prolog program:

f ([HlT], M) :- g(T, H, M).
g([], M, M).
g(tHlTl, X, M) :- h(Y, H, X), g(T, Y, M).
h(M, A, B) :- A ) B, !, M = A.
h(M, _, M).

(u) (f point) What type of parameters are acceptable in a call to h?

(b) (2 points) Explain what exactly h(M, A, B) does with suitable pa-

rameter types.

(") (f point) Explain what purpose the ! operator serves in the first
rule for h(M, A, B).

(d) (1 point) Explain what happens if the ! operator is removed from
the body of this rule.

(") (f point) What type of parameters are acceptable in a call to f ?

(f) (3 points) Explain exactly what f (L, M) does with appropriate
parameter types.

(e) (f point) What is the result returned for f ([], M)?

5



13. Consider an application that consists of the following four processes, where
represents sorne sequerrtial cornputation, arrd bexpl, bexp2, arrd

bexp3 represent Boolean expressions, whose execution or evaluation raises
no error. The lockO and unlockO calls, respectively, lock and unlock
their birrary sernaphore argumerrts. The variables 51, 52, arrd 53 are glob-
ally declared, shared binary semaphores, andtl, 12, andf3 are gtobally
declared, shared variables of type float. ta v2 f3

Process A: Process D:

lock (S1)

lock (52)
xL=xL+2
x2=x2+2
unlock(S1)
unlock(52)

Process B:

lock (52)
lock(S3)
x2=x2*3
x3=x3*3
unlock(S3)
unlock(S2)

lock(S2)
if (bexp2) then {

tl=x2+1
lock(53)
x2=x.3+4
if (bexp3) then {

t2=tL+x2
lock(S1)
x1,=t2/2
unlock(S1)
t1=x1+1

)
x3=t1*10
unlock(53)

Ì
unlock (S2)

Process C

lock (S3)

if (bexpl) then {
lock(S1)
x3=x3-4
xI=x7-4
unlock(S1)

Ì
unlock(S3)

(u) (S points) Explain every possible way that this application can dead-
lock.

(b) (5 points) Modify the code of these processes by changing the or-
der of its semaphore operations to ensure it runs free of deadlock,
preserving maximum concurrency.

6



13. Consider an application that consists of the following four processes, where
represents sorne sequerrtial cornputation, arrd bexpl, bexp2, arrd

bexp3 represent Boolean expressions, whose execution or evaluation raises
no error. The lockO and unlockO calls, respectively, lock and unlock
their birrary sernaphore argumerrts. The variables 51, 52, arrd 53 are glob-
ally declared, shared binary semaphores, andtl, 12, andf3 are gtobally
declared, shared variables of type float. ta v2 f3

Process A: Process D:

lock (S1)

lock (52)
xL=xL+2
x2=x2+2
unlock(S1)
unlock(52)

Process B:

lock (52)
lock(S3)
x2=x2*3
x3=x3*3
unlock(S3)
unlock(S2)

lock(S2)
if (bexp2) then {

tl=x2+1
lock(53)
x2=x.3+4
if (bexp3) then {

t2=tL+x2
lock(S1)
x1,=t2/2
unlock(S1)
t1=x1+1

)
x3=t1*10
unlock(53)

Ì
unlock (S2)

Process C

lock (S3)

if (bexpl) then {
lock(S1)
x3=x3-4
xI=x7-4
unlock(S1)

Ì
unlock(S3)

(u) (S points) Explain every possible way that this application can dead-
lock.

(b) (5 points) Modify the code of these processes by changing the or-
der of its semaphore operations to ensure it runs free of deadlock,
preserving maximum concurrency.

6



Name Graphical syntax Informal semantics

Sync

LossySync

SyncDrain

FIFOl

-t

Atomically takes a data item d from its source end
and writes d to its sirrk end.
Atomically takes a data item d from its source end
and either (1) writes d to its sink end if its sink end
can dispense d,, or (2) loses d.

Atomically takes data items from both its source
ends and loses them.
Has an initially empty buffer to hold a single data
item. \Mith an empty buffer, takes a data item d
frorn its source end a¡rd places it in its buffer, rnaking
it full. With a fuil buffer, writes the contents of its
buffer d to its sink end.

Table 1: A set of common Reo channels

14. Bonus question
Reo was introduced in class as a domain-specific language (DSL) to pro-
gram concurrencv protocols. The channels in Table 1 were introduced in
class as a small set of useful primitives for construction of Reo circuits.

(") (¿ points) Explairr what each of the following circuits does

A

DB C

(u) (b)

(b) (3 points) Using the primitives in Table 1, construct a circuit that
behaves like a FIF01, except that if the buffer of the FIF01 is full,
the write operation to this circuit succeeds and the value of the write
operation is lost.

(") (S points) Using the primitives in Table 1, construct a circuit that
produces three copies of every data item that it reads from its input
port ,4 through its output port B. For instance, if successive writes to
A feed this circuit with the sequence of natural numbers, I,2,3,4,...,
successive reads from B must obtain 1,1,1,2,2,2,3,3,3, 4,4,4,...

CA

B

7


