Leiden University Leiden Institute for Advanced Computer Science

Concepts of Programming Languages

F. Arbab Final Exam

8 January 2016

Student name:

Student number:

This exam consists of 4 pages and 10 questions for a total of 100 points.

Instructions:

- Write your name and student number on this hand-out.
- Verify that your copy of this hand-out is complete and legible.
- This is a closed-book, closed-notes, individual exam.
- You are not allowed to use your laptop, phone, or any other computing or telecommunication device.
- You can work on this exam only within the allocated time-slot.
- Do not unstaple or tear off pages of this hand-out.
- Do not write your answers on this hand-out.
- You must return all pages of this hand-out to the proctor at the end of the exam, regardless of whether or not you have written anything on it.

1. 10 points

What are the relative advantages disadvantages of implementing a programming language with an interpreter as compared with implementing the language with a compiler? Give at least two advantages for each approach.

2. 10 points

Consider the following BNF definition:

 $\langle S \rangle \rightarrow \langle A \rangle \langle A \rangle | c \langle B \rangle \langle A \rangle$ $\langle A \rangle \rightarrow a \langle A \rangle | \langle B \rangle | \varepsilon$ $\langle B \rangle \rightarrow c \langle B \rangle | c$

- (a) Give a rightmost derivation for the string: ccaa
- (b) Show that the BNF definition is ambiguous.

3. 10 points

Compute the weakest pre-condition for each of the following program fragments and its given post-condition:

(a) a = 3 * (b + a); b = a - 2 { b < 7 }
(b) a = -4 * b - 8 { a > 8 }

(c) if (a > b) b = 4 * a + 1 else b = 4 * a - 5; $\{b > 0\}$

(d)
$$a = 1$$

y = b * b - 4 * a * c; if (y >= 0) { z = sqrt(y); x1 = (b + z) / (-2 * a); x2 = (b - z) / (-2 * a) } { x1 = -7, x2 = 3 }

4. 10 points

Explain the meaning and purpose of

- (a) Operational semantics,
- (b) Denotational semantics,
- (c) Axiomatic semantics.

5. 10 points

- (a) In the context of sub-program level concurrency, what is a task (or a process)?
- (b) What is the difference between heavyweight and lightweight tasks?
- (c) Define competition and cooperation synchronization.
- (d) Explain how semaphores work.
- (e) Explain the concept of message passing rendezvous.

6. 10 points

Write a Scheme function merge that takes two sorted lists of numbers as arguments and returns the result of merging them into one sorted list. For example, the call

(merge '(1 4 7 9) '(3 4 5))

should return: (1 3 4 4 5 7 9).

7. 10 points

Suppose you have access to a compiler for a new strongly typed language X but you do not know whether X uses:

- (a) Name type equivalence or structure types equivalence by default. Show a simple test program (fragment), by running which you can determine which notion of type equivalence is used in X, and explain your reasoning.
- (b) Dynamic scoping or static scoping. Show a simple test program (fragment), by running which you can determine which notion of scoping is used in X, and explain your reasoning.
- (c) Call-by-reference or call-by-value result for parameter passing. Show a simple test program (fragment), by running which you can determine which notion of parameter passing is used in X, and explain your reasoning.
- (d) A left-to-right or a right-to-left order for evaluating the operands in an expression. Show a simple test program (fragment), by running which you can determine which order of evaluation is used in X, and explain your reasoning.

8. 10 points

Consider the following program:

```
#include <iostream.h>
void foo(int a, int b) {
    a = 3;
    a = a + b;
    b = a + 2;
}
int main() {
    int x = 5;
    foo(x, x);
    std::cout << x << std::endl;
}</pre>
```

What output does this program produce under each of the following parameter passing mechanisms? (Explain your reasoning).

- (a) call-by-value
- (b) call-by-reference.

9. 10 points

Consider the following program:

```
#include <iostream>
int x = 3, y = 5;
void bar(void) {
         y = y + 2;
        std::cout << x << " " << y << std::endi;
}
void baz(void) {
        int y = 7;
        x = x + 2;
        bar();
        std::cout << y << std::endl;</pre>
}.
int main() {
        int x = 5;
        x = x + 2;
        baz();
       std::cout << x << std::endi;</pre>
}
```

What output does this program produce under each of the following scoping rules? (a) Static scope

(b) Dynamic scope

10. 10 points

Write a Prolog relation subset that determines whether its first argument (a list representing a set) is a subset of its second argument (also a list representing a set). For example, the queries

subset([], [3, 4]). subset([4, 3, 4], [4, 3, 2, 1]).

should both succeed, and the query

subset([4, 3, 1], [4, 3, 2]).

should fail.