Ouestion 1: [1 point]

Give five distinguishable strings for the language $L = \{0,1\} * \{00\} \{0,1\}$ and show why they are pairwise distinguishable.

Question 2: [2 points]

- a) Give a *deterministic* finite automaton M_1 recognizing the language L_1 over the alphabet $\Sigma = \{a,b\}$ containing all strings with no two consecutive equal alphabet symbols.
- b) Construct a *deterministic* finite automaton M₂ recognizing the language L₂ denoted by the regular expression (a+ab)*bb*.
- c) Give a deterministic finite automaton M_3 recognizing the complement of the above language L_2 .

Question 3: [1,5 points]

a) Construct a *nondeterministic* finite automaton M recognizing the language L(G) generated by the regular grammar G with the following productions

 $S \rightarrow bA$ $A \rightarrow aA \mid aS \mid aB \mid \Lambda$ $B \rightarrow bS \mid \Lambda$

- b) Use the *powerset construction* to construct a *deterministic* finite automaton N recognizing the same language as the above *nondeterministic* automaton M.
- c) Use the automaton N above to construct a *regular grammar* generating the same language accepted by N. It may be helpful to rename the states of the automaton N.

Question 4: [1 point]

Use the *state elimination* method of Brzozowski and McCluskey to construct a regular expression for the language recognized by the following finite automaton

Question 5: [1 point]

Use the pumping lemma to show that the language $L = \{a^nb^na^m \mid n \ge 0, \ m \ge n\}$ is not regular.

Question 6: [2 points]

- a) Find a context-free grammar G_1 generating the language $L_1 = \{a^nb^n \mid n > 0 \}$.
- b) Find a context-free grammar G_2 generating the language $L_2 = \{b^n \mid n > 0\}$.
- c) Use the above two grammar to give a context free grammar for the language $L_3 = L_1 \cdot L_2$.
- d) Find a context-free grammar G generating the language $L_4 = L_3 *$.

Question 7: [1.5 points]

- a) Draw a pushdown automaton M recognizing the language $L = \{a^nb^m \mid m > n > 0\}$ using as alphabet symbols only A and Z_0 (the initial stack symbol).
- b) Use the above pushdown automaton M to construct a new pushdown automaton M_e accepting the above language L by *empty stack* (thus without accepting states).

The final score is given by the sum of the points obtained.