Question 1:

- a) Draw a *deterministic* finite automaton for the regular expression (a+b)*a.
- b) Using the method of Brzozowski and McCluskey, give a regular expression equivalent to the nondeterministic finite automaton $M = \langle \{q_0,q_1,q_2\}, \{a,b\}, q_0, \{q_2\}, \delta \rangle$, where

 $\delta(q_0, a) = \{q_0, q_1\}$ $\delta(q_1,a) = \{q_1\}$ $\delta(q_2, a) = \{ q_0 \}$ δ

$$\delta(q_0,b) = \{q_0\} \qquad \qquad \delta(q_1,b) = \{q_1,q_2\} \qquad \qquad \delta(q_2,b) = \{q_1,q_2\}$$

c) Convert the above automaton to an equivalent deterministic one using the subset construction (Show clearly which set of states of your NFA correspond to a state of the DFA, and omit inaccessible states).

Ouestion 2:

- a) Given two languages $L_1, L_2 \subseteq \Sigma^*$ let $L_1 \otimes L_2$ be the set { $w \in \Sigma^* | w \notin L_1$ and $w \notin L_2$ }. Prove that if L_1 and L_2 are both regular languages then also $L_1 \otimes L_2$ is regular.
- b) Find a regular expression for each of the following languages over $\Sigma = \{0,1\}$:
 - i. $L_1 = \{ w \in \Sigma^* \mid w \text{ does not end with } 01 \}$
 - ii. $L_2 = \{ w \in \Sigma^* \mid w \text{ does not contain the substring } 01 \}$
- c) Give a *deterministic* finite automaton for $L_1 \otimes L_2$ (with L_1 and L_2 as in the item above).

Question 3:

- a) Either prove or give a counterexample of the following statements:
 - i. If $L_1 \subseteq L_2$ and L_1 is a non-regular language then also L_2 is non-regular.
 - ii. If $L_1 \subseteq L_2$ and L_2 is a non-regular language then also L_1 is non-regular.
- b) Let $\Sigma = \{a,b,c\}$. Show that the language $L = \{vcw \in \Sigma^* \mid v,w \in \{a,b\}^* \text{ and } |v| = |w|\}$ is not regular (hint: use the pumping lemma).

Ouestion 4:

Let $G = \langle S \rangle$, $\{a,b\}$, P, S> be a context free grammar with productions P given by

$S \rightarrow aSSb \mid Sa \mid \Lambda$

- a) Find all strings of length 2 generated by G.
- b) Give a context free grammar for the language $L(G) \setminus \Lambda$.

Question 5:

- a) Give a context-free grammar for the language of all strings over {a,b} that are not palindromes.
- b) Show a derivation in your grammar of the strings abaabaa and babbaaa.

The final score is given by the sum of the points obtained.

[2 points]

[1 point]

[2 points]

[2,5 points]

[2,5 points]