Leiden University

Question 1:

Write a regular expression for each of the following sets of strings over $\{0, 1\}$:

- a) Any strings excepts 11,
- b) Any strings for which any odd occurrence symbol is 1,
- c) Any strings of odd length.

Question 2:

[1,5 points]

[2,0 points]

- a) For each of the following languages give a deterministic finite automaton recognizing it and having as fewer states as possible
 - i. {0}
 - ii. {1,00}
 - iii. $\{1^n \mid n \ge 2\}.$
- b) For each of the above languages give a non-deterministic finite automaton recognizing it having fewer states than the deterministic automaton you found in the previous exercise.

Question 3:

- a) Give an algorithm to determine if a *regular* language L is infinite.
- b) Give an algorithm to determine if two *regular* languages L_1 and L_2 are identical.
- c) Give an algorithm to determine for a *context-free* language L if $w \in L$.

Question 4:

[2,0 points]

[2,5 points]

- a) Consider the grammar $G = (\{S,X\},\{a,b\}, S, \{S \to \Lambda, S \to aX, X \to Sb\})$. Is the language generated by the above grammar a regular language? If yes give a finite automaton accepting the same language, otherwise use the pumping lemma to prove it is not a regular language.
- b) Consider the grammar $G = (\{S\}, \{a,b\}, S, \{S \rightarrow \Lambda, S \rightarrow aSb, S \rightarrow bSa, S \rightarrow SS\})$ generating all strings having an equal number of a's and b's. Show that this grammar is ambiguous.

Question 5:

[2,0 points]

- a) Turn the non-deterministic finite automata of question 2 into regular grammars.
- b) Give a context free grammar generating all the strings of the form $a^k b^m c^n$ with n = k + m, $k \ge 1$ and $m \ge 0$.
- c) Transform the grammar you found in 5.b into Chomsky normal form.

The final score is given by the sum of the points obtained.