- 1. **[1 point]** Find a formula ϕ of propositional logic which contains all and only the atoms p and q and r, and which is true only when p, q and r are all true or when $\neg p \land q$ is true. Give its truth table.
- 2. [2 points] Give a proof in *natural deduction* for each of the following sequents:
 - a) $(p \land q) \lor (\neg r \land p) \vdash r \rightarrow p$
 - b) $p \rightarrow q \vdash q \lor \neg p$
 - c) $p \wedge q$, $\neg (p \wedge r) \vdash \neg r$
 - c) $p \rightarrow (q \rightarrow r) \vdash (p \rightarrow q) \rightarrow (p \rightarrow r)$
- 3. [1,5 points] Compute the *conjunctive normal form* of the following formulas and check if they are valid. Explain your answers and state which laws (de Morgan law, distributive law, ...) you have applied.
 - a) $(p \land \neg q) \lor (p \land q)$.
 - b) $\neg (p \land \neg q) \land (q \lor \neg p)$.
 - c) $((p \rightarrow q) \lor p) \land (p \lor \neg (r \land \neg r \land q))$.
- 4. [2 points] Use the *tableau method* to find a counterexample for the validity of each the following sequent
 - a) $\vdash (p \land \neg q) \lor (q \rightarrow \neg p)$
 - b) $r \rightarrow (q \rightarrow p) \vdash q \rightarrow (p \rightarrow r)$
- 5. [1 point] Let P be a predicate symbol of arity 2, and f, g be two function symbols of arity 1 and 2, respectively.
 - a) Draw the *parse tree* of the formula ϕ given by $\forall x \exists y (P(x,y) \rightarrow P(z,y)) \land \exists z P(x,z)$, where x,y,z are three variables.
 - b) Compute the substitutions $\phi[t/x]$ and $\phi[t/y]$ where t = g(y,f(x)). Is the term t free for z in ϕ ?
- 6. [1 point] Let P be a unary predicate symbol, R a binary predicate symbol and c be a constant. Consider the model M with $A = \{c,d,e,f\}$, $P^M = \{c\}$, $R^M = \{(c,d),(d,e),(e,f)\}$, and $c^M = c$.
 - a) Does $M \models P(c)$ hold? Explain your answer.
 - b) Does $M \models \forall x \exists y R(x,y)$ hold? Explain your answer.
 - c) Does $M \models \forall x(P(x) \rightarrow \exists y R(x,y))$ hold? Explain your answer.
 - d) Does there exist a look-up table ℓ such that $M \models_{\ell} R(c,x)$ hold? Explain your answer.
- 7. [1,5 points] Show the validity of each of the following sequent by means of a proof in *natural* deduction, where P is a predicate of arity 1, R is a predicate of arity 2, and a, b are two constants:
 - a) $\forall x P(x) \vdash \forall x (P(x) \land P(x))$.
 - b) $a = b, \neg R(a,b) \vdash \neg \forall x R(x,x)$.
 - c) $\vdash \forall x \exists y (P(x) \rightarrow P(y))$.

The final score is given by the sum of the points obtained.