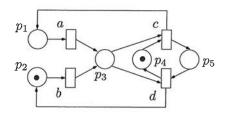

THEORY OF CONCURRENCY EXAM

Friday January 8, 2016, 14.00 - 17.00

This exam consists of 5 questions. Answers may be given both in English and in het Nederlands.

Question 1


Consider the following EN system $M = (P, T, F, C_{in})$:

- (a) Give the sequential configuration graph SCG(M) of M.
- (b) Give all $U \subseteq T$ and all $C \in \mathbb{C}_M$ such that $\#U \ge 2$ and $U \operatorname{con} C$. Draw the configuration graph CG(M) of M.
- (c) Prove that, for all EN systems, whenever $st \operatorname{con} C$ and $t \operatorname{con} C$ for transitions s, t and configuration C, then also $\{s, t\} \operatorname{con} C$.
- (d) Define what a confusion is and find all confusions in M.Argue for each whether it is conflict-increasing, conflict-decreasing or neither; and whether it is symmetric or not.

Question 2

Consider the following EN system $M_1 = (P, T, F, C_{in})$:

 M_2 is the subsystem of M_1 determined by $\{p_1, p_2, p_3\}$.

(a) Draw M_2 .

20 pt

20 pt

For two EN systems $M = (P, T, F, C_{in})$ and $M' = (P', T', F', C'_{in})$ we say that M simulates M' if there exist a relation $\alpha \subseteq \mathbb{C}_M \times \mathbb{C}_{M'}$ and a bijection $\beta : \mathbf{use}(T) \to \mathbf{use}(T')$, such that

 $(C_{in}, C'_{in}) \in \alpha$ and

for all $C, D \in \mathbb{C}_M, C' \in \mathbb{C}_{M'}, t \in \mathbf{use}(T)$: if $C[t]_M D$ and $(C, C') \in \alpha$, then there is a $D' \in \mathbb{C}_{M'}$ such that $C'[\beta(t)\rangle_{M'}D'$ and $(D, D') \in \alpha$.

- (b) Does M_2 simulate M_1 ? If so, give an appropriate α and β ; if not, explain why not.
- (c) Does M_1 simulate M_2 ? If so, give an appropriate α and β ; if not, explain why not.
- (d) Are M and M' configuration equivalent; weakly configuration equivalent; firing sequence equivalent? Why (not)?
- (e) Explore the relationship between simulation and weak configuration equivalence: are they the same, does one imply the other? Explain your answers and give (counter)examples where appropriate.

20 pt

Question 3

Let $M = (P, T, F, C_{in})$ be the EN system from Question 1.

(a) Give ind(M), the independence relation of M.

Let $x = t_1 t_3 t_4 t_5 t_2$.

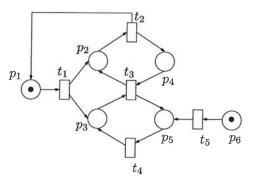
- (b) Construct $\operatorname{dep}_M(x)$ en $\operatorname{pru}(\operatorname{dep}_M(x))$, the dependency graph and pruned dependency graph of x.
- (c) Give the trace $[x]_{ind(M)}$.
- (d) Determine all subsystems of M. Is M contact-free? Explain your answers.
- (e) Fix a contact-free EN system M' configuration equivalent with M. Give a process N of your M' such that $\mathbf{pru}(\mathbf{ctr}(N)) = \mathbf{pru}(\mathbf{dep}_M(x)).$

Question 4

20 pt Let $\underline{M} = \begin{pmatrix} -2 & +3 & -1 & 0 \\ +1 & -2 & +1 & -1 \\ +1 & -1 & 0 & +1 \end{pmatrix}$ be the matrix defined by a P/T system

M with places p_1, p_2, p_3, p_4 , transitions t_1, t_2, t_3 , and initial configuration $C_{in} = (1, 3, 1, 1).$

- (a) Draw M.
- (b) Compute the p-invariants of M.


- (c) Give a positive (non-trivial) p-invariant with its value.
 - Is M covered by positive p-invariants? Is M bounded?

Explain your answers.

(d) Compute $\max\{C(p_2) : C \in \mathbb{C}_M\}$.

Question 5

Let $M = (P, T, F, W, C_{in})$ be the following P/T system:

20 pt

- (a) When do we call a P/T system a free-choice system? Verify that M is a free-choice system.
- (b) When do we call a subset of places a siphon? And when a trap?Find (construct) all siphons and subsystems of M.Argue whether or not M has sequential components.
- (c) Verify which siphons of M contain an initially marked trap.
- (d) Is *M* live? safe? bounded? Why (not)?
- (e) M' is M with transition t_5 , place p_6 and their adjacent arcs removed. Is M' live? Why (not)?

the end