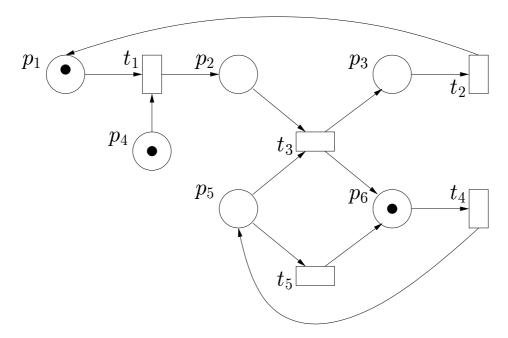
THEORY OF CONCURRENCY

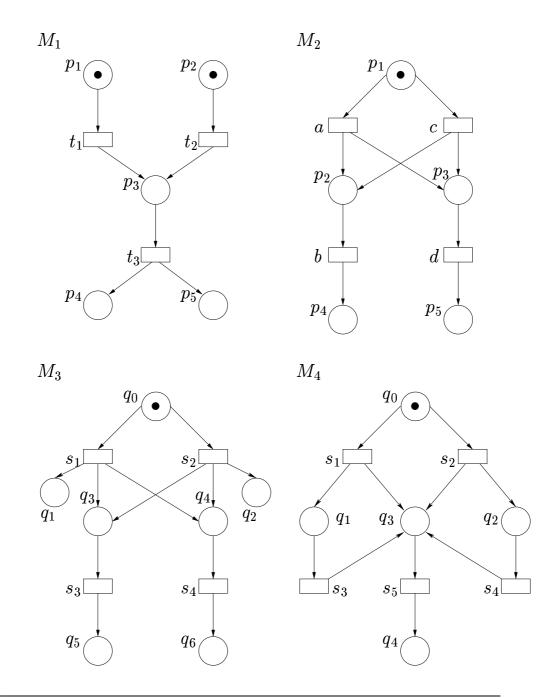
EXAM


Friday January 27, 2006, 10.00 - 13.00

This exam consists of 5 questions.

Answers may be given both in English and in het Nederlands.

Question 1 20 pt

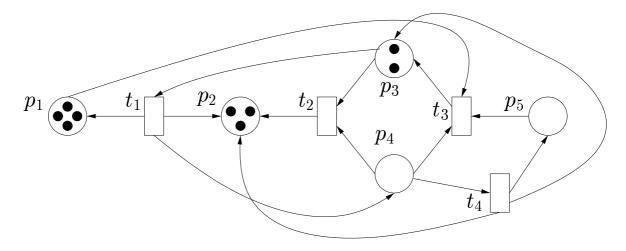

Consider the following EN system $M = (P, T, F, C_{in})$:

- (a) Give the sequential configuration graph SCG(M) of M.
- (b) When is a transition of an EN system live? Which transitions of M are live and which not? Explain why.
- (c) Give $C \in \mathbb{C}_M$ and all $U \subseteq T$ with $\#U \ge 2$ such that $U \operatorname{\mathbf{con}} C$.
- (d) Determine all confusions of M and argue whether they are conflict-increasing, conflict-decreasing, or neither; and symmetric or not.

Question 2 18 pt

- (a) Let $M = (P, T, F, C_{in})$ and $M' = (P', T', F', C'_{in})$ be two EN systems. Define when they are configuration equivalent $(M \approx M')$ and when they are firing sequence equivalent $(M \approx_{fs} M')$.
- (b) Give a short argument proving that configuration equivalence implies firing sequence equivalence.
- (c) Consider the EN systems M_1 , M_2 , M_3 , and M_4 as given next. Determine for each pair, M_i , M_j with $i \neq j$, whether or not they are configuration equivalent or firing sequence equivalent. Explain your answers.

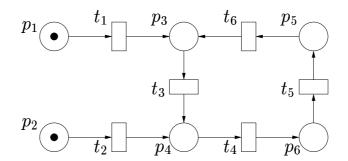
Question 3 27 pt


Let M be the contact-free EN-system of Question 1.

- (a) Draw a process $N=(P_N,T_N,F_N,\phi_1,\phi_2)$ such that, for every $t\in T$, there is at least one $s\in T_N$ with $\phi_2(s)=t$.
- (b) Indicate clearly in the diagram of N from (a), all lines, three slices, and an additional cut.
- (c) For the process N from (a), draw its contracted version $\mathbf{ctr}(N)$.
- (d) Determine the independency relation ind(M) of M.
- (e) Let $x = t_1t_4t_3t_2t_4t_5$. Give the dependency graph $\mathbf{dep}_M(x)$ of x and its pruned version $\mathbf{pru}(\mathbf{dep}_M(x))$.

(f) Let $y = t_1 t_4 t_5 t_4 t_3 t_2$ and x as in (e). Does y belong to the trace $[x]_{\mathbf{ind}(M)}$? Why (not)?

Question 4 15 pt


Consider the P/T systeem $M = (P, T, F, W, C_{in})$ as drawn below.

- (a) Compute the configurations D_1 and D_2 of M such that $C_{in}[t_1t_4\rangle D_1$ and $C_{in}[t_1t_2\rangle D_2$.
- (b) Demonstrate that M is not live.
- (c) Prove that SCG(M), the configuration graph of M, is infinite.

Question 5 20 pt

M is the P/T system as drawn below.

- (a) When is a P/T system (P, T, F, W, C_{in}) a free choice system? Verify that M is a free choice system.
- (b) Give the matrix \underline{M} and compute the p-invariants of M.
- (c) Give all siphons, traps, and subsystems of M.
- (d) Use the answers given at (b) and (c) to determine whether or not M is safe, live, bounded.

the end