- Write your name, university, and student number on every sheet you hand in.
- You may use a printout of Altman-Kleiman's book A term of commutative algebra.
- Motivate all your answers.
- If you cannot do a part of a question, you may still use its conclusion later on.
 - (1) Fix a prime number p, and let $R = \mathbb{Z}_{(p)}$, the sub-ring of \mathbb{Q} consisting of rational numbers which can be written as a fraction where the denominator is a power of p. We write $\mathfrak{m} = pR$, the unique maximal ideal of R.
 - (a) For which positive integers n is R/\mathfrak{m}^n a domain (recall that positive means > 0)?
 - (b) For which positive integers n is R/\mathfrak{m}^n an Artinian ring?
 - (c) Let $f: M \to M'$ be a map of finitely generated R-modules. Assume that the induced map $M \otimes_R R/\mathfrak{m} \to M' \otimes_R R/\mathfrak{m}$ is surjective. Show that f is surjective.
 - (2) Let R be a ring and A be an R-algebra. Let M be an R-module.
 - (a) Show that if M is a finitely generated R-module, then $M \otimes_R A$ is a finitely generated A-module.
 - (b) Show that if $M \otimes_R A$ is a finitely generated A-module and A is faithfully flat over R, then M is a finitely generated R-module.
 - (c) Show that if M is a flat R-module, then $M \otimes_R A$ is a flat A-module.
 - (d) Show that if $M \otimes_R A$ is a flat A-module and A is faithfully flat over R, then M is a flat R-module.
 - (3) Let k be a field, and R = k[x, y] the polynomial ring. Let $A = R[t]/(x^2t y^2)$.
 - (a) Is A finitely generated as an R-module?
 - (b) Is A integral as an R-algebra?
 - (c) Prove that A is an integral domain.
 - (d) Let $\mathfrak{m} = (x-1,y) \subseteq R$ and $S = R \mathfrak{m}$. Show that the induced map $S^{-1}R \to S^{-1}A$ is an isomorphism.
 - (e) What is the (Krull) dimension of A?
 - (4) Let $f: R \to A$ be a ring morphism and $f^* = \operatorname{Spec}(f) : \operatorname{Spec}(A) \to \operatorname{Spec}(R)$ be the induced map of prime spectra. Let M be an A-module, which we can also consider as an R-module via restriction of scalars along f.
 - (a) Show that $f^*(\mathrm{Ass}_A(M)) \subseteq \mathrm{Ass}_R(M)$.
 - (b) Let k be a field. Put R = k and $A = k[x_1, x_2, \ldots]/(x_1^2, x_2^2, \ldots)$, and let $f : R \to A$ be the k-algebra map sending 1 to 1. Show that $\operatorname{Spec}(A) = \{(x_1, x_2, \ldots)\}$. Deduce that $\operatorname{Ass}_A(A) = \emptyset$ and $\operatorname{Ass}_R(A) = \{(0)\}$. Conclude that $f^*(\operatorname{Ass}_A(A)) \neq \operatorname{Ass}_R(A)$.
 - (c) Let $\mathfrak{p} \in \mathrm{Ass}_R(M)$ and $m \in M$ with $\mathrm{Ann}_R(m) = \mathfrak{p}$. Write $\mathfrak{a} = \mathrm{Ann}_A(m)$. Show that $\mathrm{Ass}_R(A/\mathfrak{a}) \subset \mathrm{Ass}_R(M)$.
 - (d) Show that f induces an injective morphism $g: R/\mathfrak{p} \to A/\mathfrak{a}$. Deduce that there exists $\bar{\mathfrak{q}} \in \operatorname{Spec}(A/\mathfrak{a})$ minimal prime of A/\mathfrak{a} with $g^*(\bar{\mathfrak{q}}) = (0)$ (Hint: use localisation at $(R/\mathfrak{p}) \{0\}$; you can use Exercise (3.16)).
 - (e) In this question we assume that A is Noetherian. Show that there exists $\mathfrak{q} \in \operatorname{Spec}(A)$ such that $\overline{\mathfrak{q}} = \mathfrak{q} + \mathfrak{a}$ and $\mathfrak{q} \in \operatorname{Ass}_A(A/\mathfrak{a})$ (Hint: use (17.14)). Deduce that $f^*(\operatorname{Ass}_A(M)) = \operatorname{Ass}_R(M)$.