
Analyse 3 NA, EXAM 1

* Monday, November 6, 2017, 14.00 – 16.00 *

Motivate each answer with a computation or explanation.
The maximum amount of points for this exam is 100.

No calculators!

1. (Variation of parameters formula, Green’s function) [25 points]

Consider the initial value problem

1

4
y′′(x)− y(x) = 4e2x , y(0) = 0 , y′(0) = 0 .

(a) Compute the solution by the variation of parameters formula.
Solution: y1(x) = e2x, y2(x) = e−2x,W (y1, y2)(x) = −4 and the variation of parameters
formula gives

yp(x) = −y1(x)

∫
y2(x)16e2x

−4
dx+ y2(x)

∫
y1(x)16e2x

−4
dx = 4xe2x − e2x .

So the general solution is y(x) = c1e
2x + c2e

−2x + 4xe2x, c1, c2 ∈ R and fitting the initial
conditions finally gives y(x) = e−2x − e2x + 4xe2x

(b) Find the Green’s function.
Solution: The Green’s function is of the form

G(x, z) =

{
A(z)e2x +B(z)e−2x , 0 ≤ x < z <∞ ,
C(z)e2x +D(z)e−2x , 0 ≤ z < x <∞ .

Fitting the initial conditions G(0, z) = 0, d
dx
G(0, z) = 0 gives A(z) = B(z) = 0. Enforcing

continuity at x = z gives 0 = C(z)e2z + D(z)e−2z, so D(z) = −C(z)e4z, while using
the jump condition at x = z gives 4C(z)e−2z = 1 (for the ODE multiplied by 4), so
C(z) = 1

4
e−2z and, finally, D(z) = −1

4
e2z. In summary,

G(x, z) =

{
0 , 0 ≤ x < z <∞ ,

1
4
e2(x−z) − 1

4
e−2(x−z) , 0 ≤ z < x <∞ .

(c) Use the Green’s function from (b) to confirm your findings from (a).
Solution:

y(x) =

∫ ∞
0

G(x, z)16e2z dz =

∫ x

0

(
1

4
e2(x−z) − 1

4
e−2(x−z)

)
16e2z dz = e−2x − e2x + 4xe2x .

1 of 4



2. (Fourier Series) [25 points]

For 0 < α < π consider the function f(x) = sin(x), |x| < α, f(x+ 2α) = f(x), x ∈ R.

(a) Sketch f(x) in the range −3α < x < 3α.

(b) Show that the Fourier series of f is given by

Sf (x) =
∞∑
n=1

(−1)n
γn sin(α)

α2 − n2π2
sin
(nπx
α

)
,

with some γ ∈ R and determine γ.
Solution: We have L = α and f an odd function, so Sf (x) =

∑∞
n=1 bn sin

(
nπx
α

)
with

bn =
2

α

∫ α

0

sin(x) sin
(nπx
α

)
dx = (−1)n

2πn sin(α)

α2 − n2π2
, hence γ = 2π .

(c) Do we have Sf (x) = f(x) for all x ∈ R?
Solution: Since f is continuous for all x ∈ R with x 6= kα, k ∈ Z, we have Sf (x) = f(x)
there. At the jump discontinuities we have Sf (kα) = 1

2
(f([kα]+) + f([kα]−)).

(d) What happens for the Fourier series Sf when α→ π?
Solution: We have bn → 0, n ≥ 2, and b1 → 1, so Sf (x) = sin(x).

(d) Derive from (a) the value of the series
∑∞

n=1
n2

(1−4n2)2
.

Solution: Let α = π
2
. Then b2n = 64

π2

(
n2

(1−4n2)2

)
, so since by Parseval’s identity we have∑∞

n=1 b
2
n = 1

π/2

∫ π/2
−π/2 sin(x)2dx = 1 we have that the value of the series is π2

64
.
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3. (Fourier Transform) [25 points]

Consider the function

f(x) =

{
x e−x , x > 0 ,

0 , x ≤ 0 .

(a) Show that the Fourier transform of f is given by

f̂(k) = A

(
B + ik

B2 + k2

)2

,

with some A,B ∈ R and determine A and B.
Solution:

f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx =
1√
2π

(
−1 + ik

1 + k2

)2

therefore, A = 1√
2π

and B = −1

(b) Compute the Fourier transform of f ′.
Solution: F(f ′)(k) = (ik)f̂(k).

(c) Using the previous calculations compute the value of the integral∫ ∞
−∞

k2

k4 + 2k2 + 1
dk .

Solution: Combining (a) and (b) we have that

1

2
=
f ′(0+) + f ′(0−)

2
=

1√
2π

∫ ∞
−∞

(ik)f̂(k)eik·0 dk =
1

2π

∫ ∞
−∞

2k2

k4 + 2k2 + 1
dk

where we used that odd integrands vanish after integration. So the value is π
2
.

(d) Consider the inhomogeneous ODE

−u′′(x) + u(x) = (f ∗ f)(x) ,

which is forced by the convolution f ∗ f . Compute the Fourier transform û = F{u} of
the solution u in terms of f̂ = F{f} and use this to express the solution u in terms of f̂ .
Solution: Fourier transformation of the ODE gives

(k2 + 1)û(k) =
1√
2π
f̂(k)2 ,

so

û(k) =
f̂(k)2√

2π(k2 + 1)
,

and, hence, the solution is of the form

u(x) =
1√
2π

∫ ∞
−∞

û(k)eikx dk =
1

2π

∫ ∞
−∞

f̂(k)2

(k2 + 1)
eikx dk .
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4. (Power Series and the Frobenius Method) [25 points]

Consider for some m ∈ N the Chebyshev equation

(1− z2)y′′(z)− zy′(z) +m2y(z) = 0 .

(a) Give all ordinary and singular points of this ODE.
Solution: z = ±1 are singular points, z ∈ R \ {±1} are ordinary points

(b) Use a series ansatz around the point z = 0 and give the corresponding recurrence relation.
Solution: Since z = 0 is an ordinary point we can use the power series ansatz y(z) =∑∞

n=0 anz
n which gives the recurrence relation

an+2 =
n2 −m2

(n+ 2)(n+ 1)
an , n ∈ N0

(c) Let m = 2. Show that there is a polynomial solution with y(0) = 1, y′(0) = 0.
Solution: Since y(0) = 1, y′(0) = 0 this fixes a0 = 1, a1 = 0 and by the recurrence
relation we get a2 = −22

2
= −2 and an = 0, n ≥ 2. Hence, we get the polynomial solution

y(z) = 1− 2z2.

(d) Use your computations from (b) to determine two linearly independent solutions without
solving the recurrence relation.
Solution: We can first set a0 = 1 and a1 = 0, which gives that all coefficients with odd
index vanish and so one solution is

y1(z) =
∑

n∈Neven

anz
n .

Furthermore, setting a0 = 0 and a1 = 1 gives that all coefficients with even index vanish
and so another solution is

y2(z) =
∑

n∈Nodd

anz
n .

Since W (y1, y2)(0) = 1 we have that the Wronskian never vanishes, so {y1, y2} is a
fundamental system.

End of Exam
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