
Complex Networks: solutions to the questions

in the examination of 16 December 2015

1. List the four main categories into which real-world networks are classified
and give a short description of an example in each category.

Solution: The four main categories are: communcation networks, tech-
nological networks, economic networks, biological networks. Chapter 1 of
the lectures notes lists examples in each category.

2. 2a. Give the definition of typical distance in a graph G.

Solution:

H(G) =

∑
i,j∈V,i6=j,i↔j d(i, j)∑

i,j∈V,i6=j,i↔j 1

where d(i, j) is the graph distance between vertices i and j, and i↔ j
means that i and j are connected. This formula says that H(G) is
the average distance between two vertices that are drawn randomly
from G and are conditoned to be connected.

2b. When is a sequence of random graphs (Gn)n∈N called small world?

Solution: When there exists a constant K ∈ (0,∞) such that

lim
n→∞

P(H(Gn) ≤ K log n) = 1,

where P denotes the law of (Gn)n∈N. This says that distances within
Gn grow very slowly with n.

2c. Is the sequence of Erdős-Rényi random graphs (ERn(λ/n))n∈N small
world for all choices of λ ∈ (0,∞)?

Solution: No, only for λ 6= 1. For λ < 1, all clusters have size
O(log n), in which case the statement is obvious. For λ > 1, there is
one giant component, whose size is Θ(n), while all other clusters again
have size O(log n). But even within the giant component distances
are O(log n). For λ = 1, there are many components of size Θ(n2/3),
and they have larger distances, namely, Θ(n1/3).

3. 3a. Draw all the possible outcomes of CM4((1, 1, 2, 2)).

Solution: There are (6−1)!! = 15 ways to pair the half-edges. These
lead to only 6 different outcomes.

3b. What is the probability of each outcome? (Note that different pair-
ings of half-edges may lead to the same outcome.)

Solution: The 6 different outcomes correspond to 4, 4, 2, 2, 2, 1 pair-
ings. Hence their probabilities are 4

15 ,
4
15 ,

2
15 ,

2
15 ,

2
15 ,

1
15 .

3c. Are all the outcomes simple?

1

Solution: No, 3 outcomes contain one or two self-loops, while 1
outcome contains a double edge. Only 2 outcomes are simple.

4. A real-world network is represented as a simple (i.e., with no multiple
edges and self-loops) undirected graph G∗ with n = 5 vertices. Chung and
Lu decide they want to compare their model with the real-world network.
They define their connection probabilities {pij} (with pii ≡ 0 ∀i) and, after
computing them on the real network, they find that p34 > p53, p15 > p25,
p43 > p14, p52 = p45.

4a. Find the degree sequence ~k(G∗) of the real-world network G∗. Ex-
plain your result.

Solution: In the Chung-Lu model, the connection probabilities are
pij = kikj/2L for i 6= j and pii = 0, where {ki}ni=1 are the degrees
and L =

∑n
i=1 ki/2 is the total number of links. Therefore pil > pjl

implies ki > kj , and pil = pjl implies ki = kj (for l 6= i, j). From the
(in)equalities given in the text, we can therefore conclude that

k3 > k1 > k2 = k4 > k5.

Since the degrees are non-negative integers, it is easy to check that
the only set of numbers that satisfies the above (in)equalities in such
a way that a simple undirected graph can be realized is

4 > 3 > 2 = 2 > 1.

The corresponding degree sequence is:

~k(G∗) = (3, 2, 4, 2, 1).

4b. Draw G∗. Explain your result.

Solution: It is easy to check that there is only one graph consistent
with the degree sequence found in 4a. This graph, which is necessar-
ily G∗, is:

5

1

2

34

4c. Write the matrix P having the numerical values of {pij} as entries.

Solution: Given the expression for pij in the Chung-Lu model and
the degree sequence of G∗ (see solution to 4a), the matrix P is easily

2

calculated as

P =
1

2L


0 k1k2 k1k3 k1k4 k1k5

k2k1 0 k2k3 k2k4 k2k5
k3k1 k3k2 0 k3k4 k3k5
k4k1 k4k2 k4k3 0 k4k5
k5k1 k5k2 k5k3 k5k4 0

 =
1

12


0 6 12 6 3
6 0 8 4 2
12 8 0 8 4
6 4 8 0 2
3 2 4 2 0

 .

4d. Write the probability of occurrence of G∗ under the model used by
Chung and Lu.

Solution: Since edges are independent in the model, the probability
of the graph G∗ is

P (G∗) =
∏
i

∏
j>i

p
gij
ij (1− pij)1−gij =

25

1944
≈ 0.01286,

where gij is the entry of the adjacency matrix of G∗ and the numerical
values of pij are taken from the matrix P calculated in 4c.

4e. Draw all the graphs that have the maximum probability in the model.

Solution: The most likely graphs are those such that an edge be-
tween vertices i and j is drawn whenever pij > 1/2 and is not drawn
whenever pij < 1/2. Edges for which pij = 1/2 can be drawn or not,
with no effect on the graph probability. By looking at the entries of
P (see 4c), one can conclude that there are 4 graphs with maximum
probability. These graphs can be compactly drawn as

1

2

5

3

4

where a solid edge is always drawn, whereas a dashed edge can be
drawn or not.

4f. Is G∗ found among the graphs with maximum probability? Explain
why.

Solution: No. This is because, given a real-world network G∗,
the Chung-Lu model is not constructed in a way that ensures that
P (G∗) = maxG P (G).

5. Whenever this exam asks to “provide an algorithm,” you are requested to
do so in a programming language that is close to Python, Java, C, or C++.
Here “close” means that we are interested in the algorithmic essence. No

3

points will be deducted for simple syntactic omissions such as missing
semi-colons. The algorithmic meaning, however, should be clear beyond
doubt. Do provide declarations of essential variables. Provide algorithmic
detail with low level operations, no high level Python functions. See also
definition of pseudo-code at the end of this exam.
Of an undirected graph the following edge list is given:

v1 v2
1 2
2 3
2 4
2 5
2 6
4 6

5a. Draw the graph.

Solution: Everybody was able to draw this graph correctly!

5b. Provide the adjacency matrix of this graph in algorithmic Pseudo-
code.

Solution: Assuming an undirected graph, which is codes with double
entries.
int am = {{0, 1, 0, 0, 0, 0},

{1, 0, 1, 1, 1, 1},

{0, 1, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 1},

{0, 1, 0, 0, 0, 0},

{0, 1, 0, 1, 0, 0}};

5c. What is the mean of the number of edges of the vertices? Provide an
algorithm to compute this number.

Solution: Code in C. C++, Java and Python are also ok. No high
level Python constructs that obscure the time complexity, though.
No comments in code means less points.

#define N 6 // dimension, a constant

double mean() {

int am[N][N] = ...; // matrix declaration

int total = 0; // the sum of the edge count

for (int i = 0; i < N; i ++) { // doubly nested loop

for (int j = 0; j < N; j ++) {

total += am[i][j];

}

}

return (double)(tot / N); // mean is total dived by number of vertices

4

}

5d. What is the time complexity of this algorithm? Why?

Solution: O(n2). Two nested for loops depend on n. Other compu-
tations do not depend on n.

5e. Name two strategies to help you ascertain that your program is cor-
rect.

Solution: 1. Code inspection by yourself or by someone else
2. Correctness proof using pre and post conditions
3. Use test instances to check the outcome of the algorithm

6. 6a. Provide an algorithm for the Configuration Model based on an adja-
cency matrix. Describe any assumptions, imperfections or limitations
of your program.

Solution: Writing an algorithm for the Configuration Model that
addresses all possible problems is actually quite complicated. Below
is the most basic version, as was described during our classes. It has
a few imperfections, which will be described below.

#define D 11

#define N 50

int dist[D];

int degree[N];

int am[N][N];

int main(void) {

// init am

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

am[i][j] = 0;

}

}

// generate degree sequence with Nk = k^-t

printf("Degree distribution: ");

double t = -1.3;

double c = 20.0;

for (int k = 1; k < D; k++) {

dist[k] = (int)floor(c*pow(k, t));

printf("%d ", dist[k]);

}

5

printf("\n");

printf("Degree Sequence: ");

int i = 0;

for (int k = 0; k < D; k++) {

for (int j = 0; j < dist[k]; i++, j++) {

degree[i] = k;

printf("%d ", degree[i]);

}

}

// cm: match edges

for (int i = 1; i < N; i++) { // pick the first vertex

while (degree[i] > 0) {

degree[i]--;

int r = (rand() % (N-1)) + 1; // pick a random vertex

if (degree[r] > 0) { // is there still room to match?

am[i][r] = 1;

am[r][i] = 1;

degree[r]--;

}

}

}

return 0;

}

Assumptions: The computation of the degree sequence is added in
the code above for your convenience. It is not necessary to write out
in the exam. You may just assume that “degree” contains the correct
degree sequence. Only the final for loop (which is labeled with cm)
is needed as answer.
Imperfections and Limitations: This code may create only an ap-
proximate matching. Self-loops and multi-edges may occur. They
should later on be fixed in some way.

6b. What is the computational time complexity of the program?

Solution: This bare-bones CM program consists of a double loop, so
the time complexity isO(n2). However, if you would have put in extra
checks for self-loops and multi-edges, or added more rnadomness, the
time complexity might be different. So this answer will also depend
on the code that you wrote previously.

7. Consider the configuration model CMn(~K) with n vertices and degree

sequence ~K = (K1, . . . ,Kn) whose components are i.i.d. random variables

6

with probability distribution function f given by

f(2) = f(3) = 1
2 , f(k) = 0 otherwise,

conditioned to satisfy K1 + · · · + Kn = even. A “hacker” removes each
vertex of degree 3 with probability q ∈ (0, 1), independently of other ver-
tices. For what values of q does the “mutilated” random graph percolate
for n → ∞ (i.e., the largest connected component has a size of order n
with a probability tending to 1 as n→∞)?

Solution: The mutilated random graph percolates if and only if

ν̄ =

∑
k∈N k(k − 1)f(k)π(k)∑

k∈N kf(k)
> 1,

where π(k) is the probability that a vertex with degree k is not removed.
In our case, π(3) = 1− q and π(k) = 1 for all k 6= 3. Hence

ν̄ =
1 + 3(1− q)

1 + 3
2

.

Consequently, ν̄ > 1 if and only if q < 1
2 .

8. Consider the contact process with parameter λ ∈ (0,∞) on the triangle.
Let X(t) denote the total number of infections at time t. Define e(j) =
E(τ0|X(0) = j), j = 0, 1, 2, 3, where τ0 = inf{t ≥ 0: X(t) = 0} is the time
to extinction.

8a. Write down the transition rates for the continuous-time Markov pro-
cess X = (X(t))t≥0.

Solution: The transition rates r(i, j) from i to j are: r(3, 2) = 3,
r(2, 1) = 2, r(1, 0) = 1, r(1, 2) = 2λ, r(2, 3) = 2λ, and all other rates
zero.

8b. Write down four equations linking e(j), j = 0, 1, 2, 3.

Solution: The average time spent in state i is 1/
∑

j 6=i r(i, j). Hence
we have

e(0) = 0,

e(1) =
1

1 + 2λ
+

1

1 + 2λ
e(0) +

2λ

1 + 2λ
e(2),

e(2) =
1

2 + 2λ
+

2

2 + 2λ
e(1) +

2λ

2 + 2λ
e(3),

e(3) =
1

3
+ e(2).

8c. Use these equations to compute e(j), j = 0, 1, 2, 3.

Solution: The first two equations, respectively, the last two equa-

7

tions combine to give

e(1) =
1

1 + 2λ
[1 + 2λe(2)],

e(2) =
1

2 + 2λ

[
1 + 2e(1) + 2λ

(
1

3
+ e(2)

)]
.

Substitution of the first into the second yields

e(2) =
3

2
+

4

3
λ+

2

3
λ2,

from which in turn it follows that

e(1) =
1

1 + 2λ

[
1 + 3λ+

8

3
λ2 +

4

3
λ3
]
, e(3) =

11

6
+

4

3
λ+

2

3
λ2.

9. A real-world network is represented as a simple (i.e., with no multiple
edges and self-loops) undirected graph G∗ with n = 5 vertices. Park and
Newman, not satisfied with the model used by their colleagues Chung and
Lu in Problem 4, decide they want to compare their own model with the
real-world network. Park and Newman define their connection probabil-
ities {pij} (with f(xi) ≡ xi and pii ≡ 0 ∀i) and, after computing the
hidden variables {x∗i } on the real network using the Maximum Likelihood
principle, they find that p34 > p53, p15 > p25, p43 > p14, p52 = p45.

Note: This problem refers to Problem 4, but is completely independent of
the solution of Problem 4, so the two can be solved in any order.

9a. Find the degree sequence ~k(G∗) of the real-world network G∗. Ex-
plain your result.

Solution: In the Park-Newman model, the connection probabilities
are pij = xixj/(1 + xixj) for i 6= j and pii = 0. Therefore pil > pjl
implies xi > xj , and pil = pjl implies xi = xj (for l 6= i, j). From the
(in)equalities given in the text, we can therefore conclude that

x3 > x1 > x2 = x4 > x5.

Moreover, we know that fixing the hidden variables to the values {x∗i }
dictated by the Maximum Likelihood principle leads to the condition
〈ki〉 ≡

∑
j 6=i x

∗
i x
∗
j/(1 + x∗i x

∗
j) = ki(G

∗) for all i, where x∗i ≥ x∗j
implies ki(G

∗) ≥ kj(G∗). We can therefore conclude that

k3 > k1 > k2 = k4 > k5,

exactly as in 4a. Following the same arguments there, this piece of
information is enough to conlude that the degree sequence of G∗ is

~k(G∗) = (3, 2, 4, 2, 1).

8

9b. Draw G∗. Explain your result.

Solution: It is easy to check that there is only one graph consistent
with the degree sequence found in 9a. This graph, which is necessar-
ily G∗, is:

5

1

2

34

9c. If P denotes the matrix having the numerical values of {pij} as
entries, calculate the marginals of P, defined as the n row sums∑n

j=1 pij ∀i.

Solution: The Maximum Likelihood condition
∑

j 6=i pij = ki(G
∗)

∀i directly implies that the i-th row sum of P coincides with the
empirical degree ki(G

∗). Therefore the n row sums coincide with the

entries of the degree sequence ~k(G∗) = (3, 2, 4, 2, 1).

9d. Calculate the average nearest-neighbour degree knni (G∗) for each
node i of G∗.

Solution: From the definition of average nearest-neighbour degree
and from the topology of G∗ (see 9b), it is easy to calculate

~knn(G∗) =

(
8

3
,

7

2
,

8

4
,

7

2
, 4

)
.

9e. Calculate the clustering coefficient Ci(G
∗) of each node i for G∗.

(For nodes with degree 1, conventionally set the clustering coefficient
to 0.)

Solution: From the definition of clustering coefficient and from the
topology of G∗ (see 9b), it is easy to calculate

~C(G∗) =

(
2

3
, 1,

1

3
, 1, 0

)
.

9f. Let P (G∗) be the probability of occurrence of the real-world network
G∗ in the model used by Park and Newman. Write P (G∗) as a
function of the degree sequence of G∗ and discuss qualitatively what
happens to P (G∗) when the parameters {xi} are varied.

Solution: Since edges are independent in the Park-Newman model,
the probability of the graph G∗ is

P (G∗) =
∏
i

∏
j>i

p
gij
ij (1− pij)1−gij =

(∏
i

x
ki(G

∗)
i

)∏
i

∏
j>i

1

1 + xixj
,

9

where gij is the entry of the adjacency matrix of G∗. The Maximum
Likelihood ensures that P (G∗) is maximized when xi = x∗i ∀i. When
each parameter xi is varied away from x∗i , the probability of the graph
G∗ decreases.

10. 10a. Provide an algorithm to compute the Empirical Average Nearest
Neighbor degree. Assume as data structure an adjacency matrix.

Solution:

#define N ... // number of vertices

int am[N][N]; // adjacency matrix

int degree[N];

double annd[N];

//compute degrees for each vertex

for (int i = 0; i < N; i ++) {

degree[i] = 0;

for (int j = 0; j < N; j ++) {

degree[i] += am[i][j];

}

}

//compute average degrees of all neighbors

for (int i = 0; i < N; i ++) { // i loops through all vertices

annd[i] = 0.0; // set annd to zero, keep a running total

int n = 0; // count of neighbours

for (int j = 0; j < N; j ++) { // j loops through all neighbours

if (am[i][j] == 1) { // are we a neighbour?

annd[i] += degree[j];

n++;

}

}

// annd has the total, we need the average

annd[i] /= n;

}

10b. What is the computational time complexity of the program? Why?

Solution: The algorithm contains two double nested loops, so quadratic
in n: O(n).

11. 11a. Provide an algorithm to compute the Empirical Average Nearest
Neighbour degree. Assume as data structure an adjacency list.

Solution: This code is in C. C has no convenient built in list han-
dling. C++, Java, Pyhton do have this. I will just assume a Pseudo-
code that has a length operation built in, and an is-member function.

#define N ... // number of vertices

10

int *al[N]; // adjacency list with a built-in length operation

int degree[N];

double annd[N];

//compute degrees for each vertex

for (int i = 0; i < N; i ++) {

degree[i] = length(al[i);

}

// really superfluous, just for reasons of clarity

//compute average degrees of all neighbors

//naive version, that does a double loop through all possible vertices.

for (int i = 0; i < N; i ++) { // i loops through all vertices

annd[i] = 0.0; // set annd to zero, keep a running total

int n = 0; // count of neighbours

for (int j = 0; j < N; j ++) { // j loops through all neighbours. faster is possible

if (is_member(al[i], j)) { // are we a neighbour?

annd[i] += degree[j];

n++;

}

}

// annd has the total, we need the average

annd[i] /= n;

}

11b. What is the computational time complexity of the program? Why?

Solution: The algorithm contains two double nested loops, so quadratic
in n: O(n).
However, a faster solution to the inner loop is possible (not shown),
that loops in m the number of edges, which may be less in a sparse
network. Then the complexity becomes O(nm).

11

