Econophysics - written exam 13 January 2017

Docent: Dr. Diego Garlaschelli

Consider a financial market consisting of N stocks. The time series of log-returns calculated from the daily closing prices of these N stocks are recorded for T = 800 days and then standardized. This means that, if $x_i(t)$ denotes the standardized daily log-return of the *i*-th stock on day t, then the temporal average $\mu_{x_i} \equiv \overline{x_i} = T^{-1} \sum_{t=1}^{T} x_i(t)$ is zero for all *i* and the temporal variance $\sigma_{x_i}^2 \equiv \overline{x^2}_i - (\overline{x}_i)^2$ is one for all *i*. After calculating the $N \times N$ cross-correlation matrix **C**, whose entries are the correlation coefficients $C_{i,j}$ calculated among all pairs of the N standardized time series of $x_i(t)$, the eigenvalues $\{\lambda_i\}_{i=1}^N$ and the corresponding orthonormal eigenvectors $\{\vec{v}_i\}_{i=1}^N$ of **C** are calculated. Let $v_{i,k}$ denote the k-th entry of the eigenvector \vec{v}_i .

It is found that the three largest eigenvalues are

$$\lambda_1 = 40, \quad \lambda_2 = 4, \quad \lambda_3 = 2$$

and that the eigenvectors \vec{v}_1 and \vec{v}_2 corresponding to the two largest eigenvalues λ_1 and λ_2 have entries

$$v_{1,k} = a > 0$$
 for $1 \le k \le N$, $v_{2,k} = \begin{cases} b > 0 & \text{for } 1 \le k \le M \\ -b < 0 & \text{for } M < k \le N \end{cases}$

where 0 < M < N. The entries of all the other eigenvectors $\{\vec{v}_i\}_{i=3}^N$ are found to be distributed according to a standard normal distribution.

Recalling that the matrix C admits the spectral decomposition

$$\mathbf{C} = \sum_{i=1}^{N} \lambda_i v_{i,k} v_{i,k},$$

1

and that the orthonormality of the N eigenvectors $\{\vec{v}_i\}_{i=1}^N$ means that their scalar products equal $\vec{v}_i \cdot \vec{v}_i = \sum_{k=1}^N v_{i,k}^2 = 1$ for all i and $\vec{v}_i \cdot \vec{v}_j = \sum_{k=1}^N v_{i,k} v_{j,k} = 0$ for all i, j (with $i \neq j$), answer all the following questions.

• Question 1.

Knowing that a = 0.05, determine the number N of stocks traded in the market. (*Hint: use the normalization of* $\vec{v}_{1.}$)

• Question 2.

Determine the value of b. (Hint: use the normalization of $\vec{v}_{2.}$)

• Question 3.

Determine the value of M. (*Hint: use the orthogonality of* \vec{v}_1 and \vec{v}_2 .)

• Question 4.

Determine the value of the maximum theoretical eigenvalue λ_+ predicted by Random Matrix Theory under the null hypothesis that the log-returns of the N stocks are all independent of each other and identically distributed.

• Question 5.

Using the previous result and the decomposition $\mathbf{C} = \mathbf{C}^{(random)} + \mathbf{C}^{(group)} + \mathbf{C}^{(market)}$ (which separates the contributions of random, group, and market modes to the overall cross-correlation respectively), compute the matrix $\mathbf{C}^{(market)}$.

• Question 6.

Compute the matrix $\mathbf{C}^{(group)}$.

• Question 7.

Compute the diagonal of the matrix $\mathbf{C}^{(random)}$. (Hint: use the properties of the diagonal of \mathbf{C} .)

• Question 8.

The empirical distribution (i.e. the normalized histogram) of the off-diagonal entries of the matrix $\mathbf{C}^{(random)}$ is found to be symmetric around an average value of zero. If the symbol $\underline{\mathbf{A}}$ denotes the average of all the N^2 entries of a $N \times N$ matrix \mathbf{A} , i.e. $\underline{\mathbf{A}} = N^{-2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i,j}$, calculate the values $\mathbf{C}^{(market)}$, $\underline{\mathbf{C}}^{(group)}$, and $\underline{\mathbf{C}}^{(random)}$.

• Question 9.

Now let us project the matrix $\mathbf{C}^{(group)}$ to a network $\mathbf{G}^{(group)}$ whose nodes represents the N stocks and where a link between stocks *i* and *j* is established if and only if $C_{i,j}^{(group)} \geq 0$. Calculate the number *n* of connected components, the degree k_i of each node *i* and the clustering coefficient c_i of each node *i* in $\mathbf{G}^{(group)}$.

• Question 10.

Similarly, let us project the matrix $\mathbf{C}^{(random)}$ to a network $\mathbf{G}^{(random)}$ whose nodes represents the N stocks and where a link between stocks i and j is established if and only if $C_{i,j}^{(random)} \geq 0$. Calculate the (expected) number L of links, the (expected) degree k_i of each node i, and the (expected) average nearest neighbour degree k_i^{nn} of each node i in $\mathbf{G}^{(group)}$.

• Question 11.

Now let us define the total log-return over all stocks at time t as $y(t) \equiv \sum_{i=1}^{N} x_i(t)$. Calculate the temporal average $\mu_y \equiv \overline{y} = T^{-1} \sum_{t=1}^{T} y(t)$ of y(t).

• Question 12.

Calculate the temporal variance $\sigma_y^2 \equiv \overline{y^2} - (\overline{y})^2$ of y(t). (Hint: calculate \underline{C} from your answer to Question 8 and recall that, for standardized time series like $x_i(t)$, covariances coincide with correlation coefficients.)

• Question 13.

It is found that the temporal autocorrelation of each of the N stocks vanishes on a time scale much faster than one day, thus providing evidence that, for each *i*, the log-returns $x_i(t)$ and $x_i(t')$ (with $t \neq t'$) are independent. Can the Central Limit Theorem be used to approximate the empirical distribution P(y) of the values of y(t) over time, i.e. the normalized histogram of the values $(y(1), y(2), \ldots, y(T))$? Why?

• Question 14.

Assume the distribution P(y) defined above has power-law tails of the form $P(y) \propto |y|^{-3.5}$ for large |y|. Can it be a Levy-stable distribution? Why?

• Question 15.

Does the time series y(t) exhibit aggregational normality? Why?