Econophysics - written exam 26 June 2012

Docent: Dr. Diego Garlaschelli

You should return these pages completed. Please write your answers to all questions by filling the dotted spaces and by ticking the boxes. Motivate each of your answers in the additional sheets you will hand in. Answers are ignored if there is no explanation in the extra sheets. Number all sheets and all answers using the numbers given to the questions in these pages. Please write clearly and in English. On every sheet you hand in, please write your name and student ID. Don't forget to do the same on these pages. Good luck!

SURNAME:

STUDENT ID:

PROBLEM 1

Consider a very simple market with only 3 stocks, and denote the corresponding time series of log-returns as $x_1(t)$, $x_2(t)$, $x_3(t)$ (t = 1, ..., T). Moreover, as a simple Index of the market, consider the quantity

$$I(t) \equiv x_1(t) + x_2(t) + x_3(t) \qquad \forall t$$

The time variances of the 3 stocks and of the Index are measured, over the entire period [1, T], as

 $Var[x_1] = 1.2$ $Var[x_2] = 2.3$ $Var[x_3] = 0.7$ Var[I] = 4.8

Question 1.1

On the basis of the above measurements, what can be concluded about the correlation among the 3 stocks?

 \Box The stocks are all mutually uncorrelated;

 \Box At least 1 pair of stocks is correlated;

 \Box At least 2 pairs of stocks are correlated;

 \Box All the 3 pairs of stocks are correlated;

 \Box Nothing can be concluded.

Question 1.2

Given the logical relationship between statistical correlation and probabilistic dependence, what can be concluded about the (in)dependence among the 3 stocks?

 \Box All the 3 pairs of stocks are dependent;

 \Box At most 1 pair of stocks is independent;

 \Box At most 2 pairs of stocks are independent;

 \Box All the 3 pairs of stocks are independent;

 \Box Nothing can be concluded.

Question 1.3

The second moments of the log-returns of stocks 1, 3 and of the Index are measured as

$$x_1^2 = 1.36$$
 $x_3^2 = 0.95$ $\overline{I^2} = 4.84$

Find all the average log-returns $\overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, and \overline{I} knowing that $\overline{x_1} > 0$, $\overline{x_3} > 0$, and $\overline{I} < 0$.

 $\overline{x_1} = \dots$ $\overline{x_2} = \dots$ $\overline{x_3} = \dots$ $\overline{I} = \dots$

Knowing that

$$\overline{x_1 x_2} = 0.06 \qquad \qquad \overline{x_1 x_3} = 0.2$$

find the 3×3 covariance matrix among the three stocks.

Find the 3×3 correlation matrix among the three stocks.

Question 1.6

Draw the (correlation-based) Minimum Spanning Tree connecting the three stocks.

PROBLEM 2

In a board-interlock network, N firms are connected by L links. Each link indicates that there are common directors sitting in the boards of the two connected firms. It is proposed that the observed structure of the network can be reproduced by a *fitness model* where each pair of firms i and j is connected with probability

$$p_{ij} = x_i + x_j$$

where the fitness $x_i \in [x_{min}, x_{max}]$ is an intrinsic property of firm *i*, assumed to be proportional to the number of directors in its board. This model predicts that the expected degree of firm *i* is

$$k_i = \sum_{j \neq i} p_{ij} \approx \sum_{j=1}^N p_{ij}$$

Question 2.1

If $\overline{x} \equiv \sum_{i=1}^{N} x_i/N$ is the average fitness in the network, write the expected degree of firm *i* as a function of *N*, x_i and \overline{x} using the approximation above.

$$k_i = \dots \dots$$

Question 2.2

Write the average expected degree $\overline{k} \equiv \sum_{i=1}^{N} k_i / N$ of the network as a function of N and \overline{x} . Then, using the fact that $\overline{k} = 2L/N$, write \overline{x} as a function of N and L alone.

 $\overline{x} = \dots$

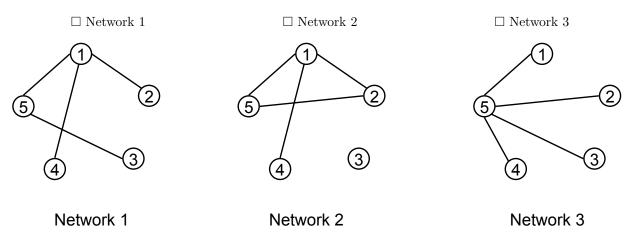
Question 2.3

Write the minimum and maximum possible values $x_{min} = 0$ and x_{max} (assuming that these extremes are the same for all x_i 's) required in order to ensure that p_{ij} is a probability, under the model considered. Then write the minimum and maximum values k_{min} and k_{max} for all degrees in the network predicted by the model, as a function of N and L alone. (Note: these extreme values are not necessarily realized, they represent lower and upper bounds for each vertex in the network.)

 $x_{min} = \dots$ $x_{max} = \dots$ $k_{min} = \dots$ $k_{max} = \dots$

Question 2.4

Use the last result to determine which of the following networks is consistent with the proposed model. (Strictly speaking, since k_{min} and k_{max} are expected quantities, they can be violated in individual realizations; however they are the most likely bounds, so the question refers to the most likely situation for each network.)



Question 2.5

Rewrite k_i as a function of x_i , L, and N alone. Invert this relation to find x_i as a function of k_i , L, and N alone. Then, for the network consistent with the model, write the values of the fitness x_i for all vertices. (Again, since k_i is an expected quantity, it might differ from its realized value in the network; so strictly speaking the question refers to the most likely values of x_i .)

 $k_i = \dots$ $x_i = \dots$ $x_i = \dots$ $x_1 = \dots$ $x_2 = \dots$ $x_3 = \dots$ $x_4 = \dots$ $x_5 = \dots$

Question 2.6

For the network consistent with the model, find the ratio r_1 between the number of directors of the least connected firm and the number of directors of the most connected firm, as predicted by the model. Then write the ratio r_2 between the number of directors of the most connected firm and the total number of directors in all boards of the network (counting multiple times the shared directors). Note that you are obtaining this information using only the knowledge of the topology of the network!

 $r_1 = \dots \dots r_2 = \dots \dots$