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PROBLEM 1

Consider a random process generating the time series of a single financial asset. The time series is recorded for T
discrete time steps, each of equal duration At (e.g. At = 1 sec, 1 day, etc.). The random variable denoting the
increment (log-return) of the time series at the i-th time step is denoted as X;, so that a realization of the entire
time series is a realization of the process (X1, Xa,..., X7). The only thing we assume about the T' random variables
{X;}L | is that they have the same expected value (X;) = p Vi. Let us denote the expected product of X; and X; as
(X, X;) and define the T' x T matrix M as the matrix with entries M;; = (X;X;). Now assume that M has the form
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1. Determine the variance o2 of X;. Determine the condition on a ensuring that o2 > 0.

o? =

Condition on a:

2. Determine the covariance of two non-consecutive increments X; and X;; with ¢ > 1.

COV[XZ', Xith] =

3. Determine the covariance of two consecutive increments X; and X; 4.

COV[XZ', XiJrl] =

4. Determine the correlation coefficient p = Corr[X;, X;1] of two consecutive increments X; and X, 1. Given the
condition on a found above in point 1, find the condition on b ensuring that p € [—1,+1].

p:

Condition on b:

5. Can you find condition(s) on @ and/or b that ensure that all the 7" increments are mutually uncorrelated? Why?

6. Can you find condition(s) on a and/or b that ensure that all the 7" increments are mutually independent? Why?




PROBLEM 2
With reference to Problem 1, now consider the random variable
T
Y=Y X (2)
i=1

describing the total increment of the time series after T time steps. The matrix M is the same as in eq.(1), with
generic parameters a, b, u? (subject to the conditions discussed previously).

1. Calculate the variance of Y as a function of a, b, u?, T.

Var[Y] =

2. Now consider the case where the T increments are mutually uncorrelated, and let Y denote Y in this particular
case. Using your answer in point 5 of Problem 1, calculate the variance of Yj.

Var[Yy] =

3. Express the ratio Var[Y]/Var[Y] as a function of only T and p (where p is the ‘consecutive’ correlation coefficient
determined previously in point 4 of Problem 1) and calculate its value in the limit of infinitely long time series.
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4. Calculate the value of the consecutive correlation p required to ensure, in the limit of infinite 7', that the total
variance of the correlated time series is twice as big as that of the uncorrelated one, i.e. r = 2.

p:

5. Calculate the value of the consecutive correlation p required to ensure, in the limit of infinite 7', that the total
variance of the correlated time series is negligible with respect to that of the uncorrelated one, i.e. r = 0.

p:

6. Discuss the (necessary) conditions on a and p required to find the distribution of Y via the Central Limit
Theorem.

7. Discuss the (sufficient) condition on b required to find the distribution of ¥ via the Central Limit Theorem.

8. Define a critical timescale At. such that, for At < At., the model defined in Problem 1 is a bad model for
the autocorrelation of financial log-returns in most empirical time series, while for At > At. the model is
approximately good. Determine the order of magnitude of At. and explain why.

At, ~ , because




PROBLEM 3

Now assume that the matrix M of eq.(1) describes the probability of connection in an undirected network, i.e. M;;
is the probability that nodes ¢ and j are connected, and 7T is the number of nodes. Ignore all the conditions on a, b, u
considered previously.

1. Assume a =0, b =1 and p© = 0. What does the resulting network model look like?

Network model:

2. Assume ¢ =0, 0 < b < 1, p = v/b. What does the resulting network model look like? What is the interpretation
of b in this case? Describe what happens as b varies from 0 to 1.

Network model:

Interpretation of b:

As b varies from O to 1, ...

3. Assume a = 0, b = 1 — p. Calculate the value of u that ensures that, irrespective of the value of p, the expected
number (L) of links in this model coincides with the expected number of links in the model in point 1 above.
What does the resulting network model look like? What is the interpretation of p? Describe qualitatively what
happens to the expected clustering coefficient and average distance as p varies from 0 to 1.

u:

Network model:

Interpretation of p:

As p varies from 0O to 1, ...

4. Indicate which (if any) of the above network model(s) can generate an average vertex-vertex distance consistent
with that of most empirical economic networks, and which model(s) can do the same for the degree distribution.

Good model(s) for distance: Good model(s) for degree distribution:

5. Indicate which network model(s), among the three ones defined above, can generate a power-law distribution
of log-returns if used as the agent-agent interaction graph in the Cont-Bouchaud model. Indicate the specific
value of the parameters a, b, pu for which this is true.

Model:




