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PROBLEM 1

Consider a simple model of a market with only one stock and N agents trading it. Time is discrete and, at each
time step t, the agent i has a certain demand xi(t) for the stock (i = 1, . . . N and t = 1, . . . T where T is the total
number of time steps). The demand xi(t) is assumed to be a real number (−∞ < xi(t) < +∞) where xi(t) > 0 means
that at time t the agent i wants to buy a quantity xi(t) of the stock, while xi(t) < 0 means that at time t the agent i
wants to sell a quantity xi(t) of the stock. The case xi(t) = 0 means that at time t the agent i does not want to take
action.

We assume that, for different values of i and t, the quantities {xi(t)} are independent and identically distributed
(i.i.d.) random variables {Xi(t)}, each with probability density function (PDF) given by

p(x) = p(X = x) =

 C · x−α x > +1
p0(x) −1 ≤ x ≤ +1
C · (−x)−α x < −1

(1)

with C > 0, α > 1 and where p0(x) is symmetric around x = 0, i.e. p0(x) = p0(−x), and such that∫ +1

−1
p0(x)dx = A (2)

where A is positive and finite (i.e. 0 < A < +∞).

Question 1.1

Find the value of C (as a function of α and A) such that p(x) is a correctly normalized PDF.

Normalization requirement: 1 =
∫ +∞
−∞ p(x)dx =

∫ −1
−∞ p(x)dx+

∫ +1

−1 p(x)dx+
∫ +∞
+1

p(x)dx = A+ 2
∫ +∞
+1

p(x)dx =

= A+ 2C
∫ +∞
+1

x−αdx = A+ 2C
α−1

This implies C = (1−A)(α−1)
2

Question 1.2

Calculate the mean value µ of Xi(t). If necessary, distinguish different regimes depending on the value of α.

From the symmetry of p(x) around zero, i.e. p(x) = p(−x), it follows trivially that

µ ≡
∫ +∞
−∞ xp(x)dx =

∫ 0

−∞ xp(x)dx+
∫ +∞
0

xp(x)dx = −
∫ +∞
0

xp(x)dx+
∫ +∞
0

xp(x)dx = 0

Note that this holds irrespective of the value of α.

Question 1.3

Calculate the variance σ2 of Xi(t) as a function of α, A and B, where B ≡
∫ +1

−1 x
2p0(x)dx is a positive and finite

constant (0 < B < +∞). If necessary, distinguish different regimes depending on the value of α.

σ2 =
∫ +∞
−∞ x2p(x)dx = B + 2

∫ +∞
+1

x2p(x)dx =

{
+∞ α < 3

B + 2C
α−3 = B + (α−1)(1−A)

α−3 α > 3



3

PROBLEM 2

With reference to Problem 1, assume that at time t the log-return r(t) of the traded stock is determined by the
demand of all agents as follows (where 1� N < +∞ and 0 < D < +∞):

r(t) ≡ D
N∑
i=1

xi(t) (3)

Question 2.1

For each of the regimes you have identified in Problem 1, what can be concluded about the distribution of r(t) and
its parameters?

Case α > 3:
all the variables {Xi(t)} are i.i.d. with finite mean (µ = 0) and finite variance (σ2 < 0). (See Question 1.3.)
Since N is large, we can therefore apply the Central Limit Theorem (CLT) to eq.(3) and conclude
that the PDF of r(t) is asymptotically a Normal distribution with mean

E[r(t)] = D

N∑
i=1

E[Xi(t)] = DNµ = 0

and, since the {Xi(t)} are i.i.d., variance

V ar[r(t)] = D2V ar
[ N∑
i=1

Xi(t)
]

= D2
N∑
i=1

V ar[Xi(t)] = D2σ2N = D2N

[
B +

α+A− αA
α− 3

]

Case α < 3:
all the variables {Xi(t)} are i.i.d. with finite mean (µ = 0) and infinite variance (σ2 = +∞). (See Question 1.3.)
Since N is large, the PDF of r(t) is asymptotically a Levy-stable distribution with infinite variance, mean

E[r(t)] = D

N∑
i=1

E[Xi(t)] = DNµ = 0

and power-law tail
P [r] ∝ r−α where α is the same exponent as the tail of p(x), so 1 < α < 3.

Question 2.2

For each of the regimes you have identified in Problem 1, what does the distribution of r(t) have in common with
the empirical log-return distributions and what differs?

Case α > 3:
What differs: the PDF of r(t) is asymptotically a Normal distribution, while real log-return distributions
have power-law tails P [r] ∝ r−β with exponent β > 3.
What is similar: aggregational normality (normality of the distribution of longer and longer sums of
log-returns) is reproduced.

Case α < 3:
What is similar: the PDF of r(t) is asymptotically a distribution with power-law tail P [r] ∝ r−α, i.e.
qualitatively similar to real log-return distributions that have power-law tails P [r] ∝ r−β .
What differs: here the exponent is 1 < α < 3, while in most empirical log-return distributions it is β > 3.
Moreover, aggregational normality is not reproduced since here the Levy-stable distribution with
exponent 1 < α < 3 is preserved at all frequencies.
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PROBLEM 3

With reference again to Problem 1, imagine that the correlation coefficient Cij between the time series of the
demands of agents i and j is calculated for each i and j, and that the resulting N × N correlation matrix C is
obtained. Assume that N is very large and that T = 4N .

(Note: C is the correlation matrix between different agents’ demands for the same stock, not between price returns
of different stocks. Still, the same definitions for stock return correlation matrices can be applied.)

Question 3.1

Write the PDF of the eigenvalues {η} of C. Explain your result.

Since the {Xi(t)} are i.i.d., the correlation matrix C is a Wishart matrix consistent with Random Matrix
Theory (RMT). Since N is very large and T = 4N , the eigenvalues of C are asymptotically distributed
according to the Sengupta-Mitra distribution with parameters:
Q ≡ T/N = 4, ηmax = [1 + 1/

√
Q]2 = [3/2]2 = 9/4, ηmin = [1− 1/

√
Q]2 = [1/2]2 = 1/4.

So P (η) =

{
2
π

√
(9/4−η)(η−1/4)

η 1/4 ≤ η ≤ 9/4

0 else

Question 3.2

Write in a compact form the market-mode component Cm and the group-mode component Cg of C.

Since C is described by the above Sengupta-Mitra distribution, it has no deviating eigenvalue outside the
range [ηmin, ηmax], so it does not have any market-mode or group-mode component:

Cm = 0

Cg = 0

Question 3.3

Now write the PDF of the components {φ} of one eigenvector of the matrix C−Cm −Cg. Explain your result.

Since C−Cm −Cg = C is a Wishart matrix consistent with RMT, the components {φ} of its eigenvectors
are distributed according to the Porter-Thomas distribution:

P (φ) = e−φ
2/2

√
2π

Question 3.4

Compare the properties of C with those observed in empirical stock return correlations.

C does not have any market-mode or group-mode component, while real stock return correlations have a very
strong market mode characterized by a dominating eigenvalue ηmarket � ηmax and significant group-mode
correlations characterized by eigenvalues in the range (ηmax, ηmarket), partly reflecting industrial sectors.
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PROBLEM 4

With reference to Problem 3, filter the correlation matrix C to define a network among the N agents: for each pair
of agents i and j (with i 6= j), draw an undirected link if Cij > 0, otherwise leave the two agents not connected.

Question 4.1

Write the expected number of links L, the expected average degree k̄ and the expected link density c in the network.

Since C comes from i.i.d. time series, its non-diagonal entries (note: not its eigenvalues!) are symmetrically
distributed around zero. So half of the non-diagonal entries will be such that Cij > 0 and another half will
be such that Cij < 0. Then the network described above will have half the number of possible links:

L = 1
2
N(N−1)

2 = N(N−1)
4 k̄ = N−1

2 ≈ N
2 c = 1

2

Question 4.2

Now consider an Erdos-Renyi random graph model with connection probability p. What value of p would be
required to obtain the same properties you found in Question 4.1?

We would need a half-connected random graph, i.e. p = 1
2

Question 4.3

Let G1 be the graph generated from the correlation matrix C and let G2 be a graph generated using the Erdos-Renyi
model with the value of p you found in Question 4.2.

Are pairs of links statistically independent in G1? No

Why? Because correlations (even when generated by random i.i.d. data) must obey constraints,
such as the fact that if Cij = 1 and Cjk = 1 then Cik = 1. Therefore if i is connected to j and j is connected
to k, it is more likely that i is connected to k than it is not. Another explanation is the fact that correlations
can be transformed to metric distances (e.g. when one constructs the Minimum Spanning Tree), and must
therefore obey some ‘transformed’ triangular inequality, making triples of correlations dependent on each other.

Are pairs of links statistically independent in G2? Yes

Why? Because links are drawn independently by construction in the Erdos-Renyi model.

Question 4.4

If C(G1) and C(G2) denote the average clustering coefficients of G1 and G2 respectively, do you expect that
C(G1) = C(G2), C(G1) > C(G2) or C(G1) < C(G2)?

C(G1) > C(G2)

Why? Because of the above dependencies, it is more likely to form triangles in C(G1) than in C(G2).


