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PROBLEM 1 (3 POINTS)

Consider a random process generating the time series of a single financial asset. The time series is recorded for T
discrete time steps, each of equal duration ∆t (e.g. ∆t = 1 sec, 1 day, etc.). The random variable denoting the
increment (log-return) of the time series at the i-th time step is denoted as Xi, so that a realization of the entire
time series is a realization of the process (X1, X2, . . . , XT ). The only thing we assume about the T random variables
{Xi}Ti=1 is that they have the same expected value 〈Xi〉 = µ ∀i. Let us denote the expected product of Xi and Xj as
〈XiXj〉 and define the T × T matrix M as the matrix with entries Mij = 〈XiXj〉. Now assume that M has the form

M =



a b µ2 µ2 µ2 µ2 · · · µ2

b a b µ2 µ2 µ2 · · · µ2

µ2 b a b µ2 µ2 · · · µ2

µ2 µ2 b a b µ2 · · · µ2

...
...

µ2 · · · µ2 b a b µ2 µ2

µ2 · · · µ2 µ2 b a b µ2

µ2 · · · µ2 µ2 µ2 b a b
µ2 · · · µ2 µ2 µ2 µ2 b a


(1)

1. Determine the variance σ2 of Xi. Determine the condition on a ensuring that σ2 ≥ 0.

σ2 = a− µ2 (since σ2 = 〈X2
i 〉 − 〈Xi〉2 = Mii − µ2)

Condition on a: a ≥ µ2 (follows from the requirement σ2 ≥ 0)

2. Determine the covariance of two non-consecutive increments Xi and Xi+t with t > 1.

Cov[Xi, Xi+t] = 〈XiXi+t〉 − 〈Xi〉〈Xi+t〉 = Mi,i+t − µ2 = µ2 − µ2 = 0 (t > 1)

3. Determine the covariance of two consecutive increments Xi and Xi+1.

Cov[Xi, Xi+1] = 〈XiXi+1〉 − 〈Xi〉〈Xi+1〉 = Mi,i+1 − µ2 = b− µ2

4. Determine the correlation coefficient ρ ≡ Corr[Xi, Xi+1] of two consecutive increments Xi and Xi+1. Given the
condition on a found above in point 1, find the condition on b ensuring that ρ ∈ [−1,+1].

ρ = Corr[Xi, Xi+1] =
Cov[Xi, Xi+1]√
Var[Xi]Var[Xi+1]

=
b− µ2

σ2
=
b− µ2

a− µ2

Condition on b: 2µ2 − a ≤ b ≤ a (ρ ≤ +1 implies b ≤ a; ρ ≥ −1 implies b ≥ 2µ2 − a)

5. Can you find condition(s) on a and/or b that ensure that all the T increments are mutually uncorrelated? Why?

Yes, it suffices to require that Corr[Xi, Xj ]=0 ∀i 6= j. This implies ρ = 0, i.e. b = µ2.

6. Can you find condition(s) on a and/or b that ensure that all the T increments are mutually independent? Why?

No, because even when all correlations are zero, the random variables can be dependent
(independence implies no correlation, but not viceversa).
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PROBLEM 2 (3 POINTS)

With reference to Problem 1, now consider the random variable

Y ≡
T∑

i=1

Xi (2)

describing the total increment of the time series after T time steps. The matrix M is the same as in eq.(1), with
generic parameters a, b, µ2 (subject to the conditions discussed previously).

1. Calculate the variance of Y as a function of a, b, µ2, T .

Var[Y ] =
∑T

i=1

∑T
j=1 Cov[Xi, Xj ] =

∑T
i=1

∑T
j=1(Mij − µ2) = T (a− µ2) + 2(T − 1)(b− µ2)

2. Now consider the case where the T increments are mutually uncorrelated, and let Y0 denote Y in this particular
case. Using your answer in point 5 of Problem 1, calculate the variance of Y0.

Var[Y0] = T (a− µ2) (since b = µ2 when increments are uncorrelated)

3. Express the ratio Var[Y ]/Var[Y0] as a function of only T and ρ (where ρ is the ‘consecutive’ correlation coefficient
determined previously in point 4 of Problem 1) and calculate its value in the limit of infinitely long time series.

r ≡ lim
T→+∞

Var[Y ]

Var[Y0]
= lim

T→+∞

T (a− µ2) + 2(T − 1)(b− µ2)

T (a− µ2)
= lim

T→+∞

[
1 + 2ρ

T − 1

T

]
= 1 + 2ρ

4. Calculate the value of the consecutive correlation ρ required to ensure, in the limit of infinite T , that the total
variance of the correlated time series is twice as big as that of the uncorrelated one, i.e. r = 2.

ρ = r−1
2 = 1

2 when r = 2

5. Calculate the value of the consecutive correlation ρ required to ensure, in the limit of infinite T , that the total
variance of the correlated time series is negligible with respect to that of the uncorrelated one, i.e. r = 0.

ρ = r−1
2 = − 1

2 when r = 0

6. Discuss the (necessary) conditions on a and µ required to find the distribution of Y via the Central Limit
Theorem.

µ < +∞ (to apply the CLT to a sum of variables, all means must be finite)
a < +∞ (to apply the CLT to a sum of variables, all variances must be finite)

7. Discuss the (sufficient) condition on b required to find the distribution of Y via the Central Limit Theorem.

b = µ2 (if the CLT can be applied, it means that the variables in the sum are all independent)

8. Define a critical timescale ∆tc such that, for ∆t � ∆tc, the model defined in Problem 1 is a bad model for
the autocorrelation of financial log-returns in most empirical time series, while for ∆t � ∆tc the model is
approximately good. Determine the order of magnitude of ∆tc and explain why.

∆tc ≈ 1min , because real log-returns are autocorrelated over shorter timescales
and uncorrelated over longer timescales
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PROBLEM 3 (3 POINTS)

Now assume that the matrix M of eq.(1) describes the probability of connection in an undirected network, i.e. Mij

is the probability that nodes i and j are connected, and T is the number of nodes. Ignore all the conditions on a, b, µ
considered previously.

1. Assume a = 0, b = 1 and µ = 0. What does the resulting network model look like?

Network model: unidimensional chain of T nodes

2. Assume a = 0, 0 ≤ b ≤ 1, µ =
√
b. What does the resulting network model look like? What is the interpretation

of b in this case? Describe what happens as b varies from 0 to 1.

Network model: Erdő-Rényi random graph

Interpretation of b: connection probability in the Erdő-Rényi model

As b varies from 0 to 1, the random graph changes from an empty graph to a full graph
(optional: undergoing a percolation transition at the critical value bc = 1/T )

3. Assume a = 0, b = 1− p. Calculate the value of µ that ensures that, irrespective of the value of p, the expected
number 〈L〉 of links in this model coincides with the expected number of links in the model in point 1 above.
What does the resulting network model look like? What is the interpretation of p? Describe qualitatively what
happens to the expected clustering coefficient and average distance as p varies from 0 to 1.

µ =

√
2p

T − 2
: follows from equating 〈L〉=

∑
i<j

Mij =(T−1)

[
1−p+ µ2

(
T

2
−1

)]
and T−1

Network model: Watts-Strogatz “small-world” model
(optional: apart from the openness of the chain)

Interpretation of p: rewiring probability

As p varies from 0 to 1, the network changes from a unidimensional lattice to a random
graph (optional: with an intermediate “small-world” region).

4. Indicate which (if any) of the above network model(s) can generate an average vertex-vertex distance consistent
with that of most empirical economic networks, and which model(s) can do the same for the degree distribution.

Good model(s) for distance: 2 and 3 Good model(s) for degree distribution: none

5. Indicate which network model(s), among the three ones defined above, can generate a power-law distribution
of log-returns if used as the agent-agent interaction graph in the Cont-Bouchaud model. Indicate the specific
value of the parameters a, b, µ for which this is true.

Model: Erdős-Rényi random graph (2)

a = 0 b = T−1 (only at the percolation threshold) µ =
√
b = T−1/2


