Werkgroep 10 Fysica van de Vaste Stof — 17 febr 2011 Oplossingen
Oefenopgaven over roostertrillingen en fononen (Kittel H4).
Problem 4.3 in Kittel. For the problem treated by (18) to (26), find the amplitude

ratio u /v for the two branches at K., = 7/a. Show that at this value of K the two
lattices act as if decoupled: one lattice remains at rest while the other lattice moves.

Solution:
From Eqn. (21) in Kittel, let K = K. = 7/a, we get:
200 — lez 0 .
det( O " ) =0 (15)

The solution to this equation gives the normal modes frequencies at this X value:
w* =20/My; W =2C/M, (16)
Substitute this expression of «w? in to (20) in Kittel, we found:

e When w? = 2C/My, it follows that:
%Hm an

which gives a mode that w is finite, and » is zero.

e When w? = 2C/M,, it follows that:
~=0 (18)

which gives a mode that # is finite and u is zero. In any cases, the two lattices
act as if decoupled: one lattice remains at rest while the other lattice moves.

Problem 4.5 in Kittel. To assist solving the following problem, solve this with cou-
pling constants (/1 and (5, then set ¢ = ', and 5 = 10C'. Consider the normal
modes of a linear chain in which the force constants between nearest-neighbor atoms
are alternately €' and 10C. Let the masses be equal, and let the nearest-neighbor
separation be a/2. Find w(k) at k = 0 and k = 7/a. Sketch in the dispersion relation

by eye. This problem simulates a crystal of diatomic such as Hs.

Solution:

Now as in Fig. 3, let the coupling constants be in general C';, and (5, then the

equations of motions are:

M, = Ci(tng —tn1) — Caltng — tUn_12)
= Oyt g + Cotty, 12 — (C1 + C2) 1
Miing = Co(tny11 — Unsg) — C1(Ung — Un1)
= Cotbpr11 + Crtb 1 — (C1 + C2)tiy 2



Figure 3: The diatomic linear chain with alternating coupling con-

stants.

For the normal modes, they are in the form:

Ut = A eilkna—wt)
Uns = Aygilkna—ut)
substitute (20) in to (19), we have:
A1[w* M — (Cy + Ca)] + Ax(Ch + Coe ™) = 0
A (O 4+ O™ + AWM — (C1 + 03)] =0
to have non trivial solutions, it requires:

et sz — (Ol + 02) Ol + Oge_ika —0
Ol —+ Oze_ika sz — (01 + OQ) N

this gives the dispersion relations of:

M
gset 7 = C, and (5 = 10C', we found the dispersion relation is:

1
W (01 + Oy 4/CF + CF + 2C1Cyc08 ka>

c
o= (11 + /101 + 20 cos ka)

and at k = 0, and k = 7/a, the normal mode frequencies are:

1/ £25 : f tical b h
SR : for optical branc

e at k=0, we have:

w —
w =70 : for acoustic branch
e at k = mw/a, we have:
A0 f tical b h
W=A4] —— : for optical branc
M B
4/ 20 f tic b h
W=4/ — : for acoustic branc
M

The dispersion relation is drawn in Fig. 4.

(20)
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Figure 4: The dispersion relation for diatomic linear chain with alter-
nating coupling constants C'; = €, and (5 = 10C.

Verder werd het volgende probleem genoemd:

Zeer veel inzicht kan ook verkregen worden door bij het probleem van twee verschillende
atomen per primitieve cel (Kittel blz 95 — 99) in de oplossing van Eq (22) [ zie de
uitdrukking gegeven op college] het geval van M1 = M2 te beschouwen, en aan te tonen
dat de situatie (de dispersierelatie) van het geval van één atoom per primitieve cel wordt
herkregen. Dit is ook probleem 22.2 in Ashcroft en Mermin, en de uitwerking wordt
hieronder gepresenteerd



Problem 22.2 in Ashcroft and Mermin: Diatomic Linear Chain. Consider a linear
chain in which alternate ions have mass M; and Ms;, and only nearest neighbors
interact.

(a). Show that the dispersion relation for the normal modes is:

= L O
M Ms

W

<M1 My £ /Mt M+ 2M; My cos ka) (1)

(b). Discuss the form of the dipersion relation and the nature of the normal modes
when M, > M.

(c¢). Compare the dispersion relation with that of the monatomic linear chain when
M, = M.

Solution:

(a). As in Fig. 1, let the coordinates of two atoms in the n*® unit cell be u,; and
Up,, then the equation of motions are:

n-1,1 un-1,2 n,1 un,2 n+1,1 un+1,2

Figure 1: The diatomic linear chain with alternating masses.

Mithy 1 = Ctng —Un1) — ClUn1 — Un-12) = Clllnz + tUn-12 — 2Uy1)

Ml 2 = Ctni11 — Una) — Cltbng — Un1) = Cllpi11 + Un1 — 2Uy20)

(2)

For the normal modes, they are in the form:

Up 1 = Alei(k:na—wt)

Azei(.fma—wt)

(3)

Upz —
substitute (3) in to (2), we have:

Al(w2M1 =S QO) + AQO(l + e_ika’) 0
Alc(l -+ eik“) + AQ({UQMQ — QO) =

(4)



to have non trivial solutions, it requires:

wWPM —2C C(1 4 e7%2)
S ( Ol + %) wiMy—2C¢ ) =" (5)

this gives the dispersion relations of:

s  C
- MM,

W

(Ml + My =/ M2+ MZ + 20, My cos ka) (6)

(b). when M; > Ms, then My/M; < 1, expand (6):

@ M. M\? M
Bes . [ L2 o T o [ 22 cos k
W M2 ( Jer —+ M1 = Mlcos a ()
5 7

C M, M, M,\?
o | Fe 2 o 11 22 el e -
o |3 (v prconsa) o (32))

e For 74”7 in (7), it follows that:

20 Ms
et | s 8
TNV [ +O(M1)] 8)
plug in to (4), we get:
Ay
— — 0 9
T ©)

this gives a normal mode in which the atom with mass M; does not os-
cillate, while the atom with mass M, oscillate with frequency given in

(9).

e For 7-” in (7), it follows that:

W= Qﬁcl sin% [1 + 0(%)} (10)
plug in to (4), we get:
Ay (11)
— —
A

this gives a normal mode in which the two atoms within a same primitive
cell move in phase, just a whole unit, since M; > Ms, the frequency is
determined by the lager one, say M.

(¢). When My = My = M, (6) gives:

1= %(2:&\/2+2008ka) (12)
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Figure 2: The dispersion relation for the diatomic linear chain when
M, = My = M. Shaded area gives the Brillouin zone for the

diatomic chain.

this dispersion relation is shown as in Fig. 2, where for the first Brillouin zone
for the diatomic chain is ke € |—m,7|. In terms of the new lattice constant
a' = a/2, the dispersion relation is then:

2C T
2 — ! ! .
W —M(licoska), ka' € | 2,2] (13)
For the optical branch, consider the part with ka’ € [—7,0], then:
2C 20
W = ﬂ(l + coska') = ﬂ[l — cos(ka' + 7)) (14)

notice that ka’ +m ¢ [%? 7], above expression indicates that the optical branch in
dispersion relation for the diatomic chain in [—%, 0] is equivalent to the acoustic
branch in [%,W]. Similarly, the optical branch in dispersion relation for the
diatomic chain in [0, 5] is equivalent to the acoustic branch in [—~m, —Z]. Thus,
instead of describing the dispersion relation with both optical and acoustic
branch in ka’ € [—5, %], it is equivalent to just consider the acoustic branch
in ka' € [, |, which is just the dispersion relation for the monatomic chain.
Therefore, when setting M, = Ms; = M, the dispersion relation for monatomic

chain is recovered.





