
Answers - MOCK EXAM

1. The distance between emission and the detector is measured in the lab frame.
Given that only half of the 𝜋+ mesons reach the detector, it corresponds to the
distance traveled by the meson beam in the half-life of the meson as measured
in the lab frame. To start, we need to transform the half-life from the rest one,
𝑡01/2 = 2.5 · 10−8, to the lab one:

𝑡1/2 = 𝛾 𝑡01/2 =
1√︁

1 − 𝑣2

𝑐2

2.5 · 10−8 s , (1)

and then set the distance traveled in the lab frame equal to this half-life times the
velocity of the beam, i.e.

15 m = 𝑣 · 𝑡1/2
=

𝑣√︁
1 − 𝑣2

𝑐2

2.5 · 10−8 s (2)

=
𝑣/𝑐√︁
1 − 𝑣2

𝑐2

3 · 108 · 2.5 · 10−8 s (3)

The latter can be easily solved for 𝑣/𝑐, after taking the square of the equation.

The result is 𝑣 =
√︁

4
5𝑐

2. In system 𝑆0 the plates are at rest and making an angle of 30°, equivalently 𝜋/6,
with the 𝑥0-axis.

• The field will be the usual uniform field perpendicular to the plates, pointing
toward the negative plate, i.e. making an angle of −𝜋/3 with the 𝑥0-axis:

𝐸⃗0 =
𝜎0
2𝜖0

(︁
𝑥̂0 −

√
3𝑦0

)︁
(4)

The normal vector perpendicular to the plates and pointing in the direction
of the field is 𝑛̂0 = 1

2

(︀
𝑥̂0 −

√
3𝑦0
)︀
. So we can also write 𝐸⃗0 = 𝜎0

𝜖0
𝑛̂0. If we call

𝜃0 the angle that the plates make with the 𝑥-axis (in this case 30), and 𝜃𝐸0

the angle that the field makes with the 𝑥-axis, we have 𝜃𝐸0 = −
(︀
𝜋
2 − 𝜃0

)︀
.

• The system 𝑆 moving w.r.t. 𝑆0 along the 𝑥-axis to the right at speed 𝑣. The
transformation of the electric field for a boost in the 𝑥-direction gives:

𝐸𝑥 = 𝐸0
𝑥 , 𝐸𝑦 = 𝛾𝐸0

𝑦 , (5)

where 𝛾 = 1/
√︀

1 − 𝑣2/𝑐2. Hence we have:

𝐸⃗ =
𝜎0
2𝜖0

(︁
𝑥̂− 𝛾

√
3𝑦
)︁

(6)
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• The motion contracts directions parallel to it. The width of the plates will not
be affected, since it is in a direction perpendicular to the motion. However
the length of the plates, has a component along 𝑥 and one along 𝑦. The
component along 𝑥 is contracted, while the one along 𝑦 is not. Overall this
results in a change of the angle that the plates make with the 𝑥 − 𝑎𝑥𝑖𝑠,
specifically this angle will be bigger than the one in system 𝒮0, i.e. 𝜃0. You
can think of the tangent of this angle as given by the ratio of the 𝑦-component
of the length of the plates, to the 𝑥-component of the length of the plates.
Hence the tangent of the new angle will be the tangent of the angle in 𝑆0

times 𝛾.

tan 𝜃 = 𝛾 tan 𝜃0

=
𝛾√
3

(7)

So 𝜃 = tan−1 (𝛾/
√

3) > 𝜃0.

• Let us find the angle 𝜃𝐸 that the field 𝐸⃗ makes with the axis:

tan 𝜃𝐸 =
𝐸𝑦

𝐸𝑥

= −𝛾
√

3 (8)

So 𝜃𝐸 = tan−1(−𝛾
√

3), corresponding to 𝜃𝐸 ̸= −
(︀
𝜋
2 − 𝜃

)︀
. Hence the field in

𝑆 is not perpendicular to the plates.

3. 𝐸 = 𝐸0𝑥̂ and 𝐵 = 𝐸0
2𝑐 (cos 𝜃𝑥̂ + sin 𝜃𝑦)

• In general, given two fields 𝐸 and 𝐵 which are not orthogonal, we can trans-
form to a frame in which the new fields will be parallel via a boost in direction
𝐸 ×𝐵 with velocity the solution of the quadratic equation 𝛽2 − 𝑏𝛽 + 1 = 0,
where 𝛽 = 𝑣/𝑐 and 𝑏 = 𝐸2+𝑐2𝐵2

𝐸×𝐵𝑐 . Hence for this case, we need a frame moving
along the 𝑧 direction.

– Let us find the transformation of the fields for a boost in the 𝑧 direction,
with uniform velocity 𝑣 = 𝑣𝑧.

Using:

𝐸′
‖ = 𝐸‖ , 𝐸⃗′

⊥ = 𝛾
(︁
𝐸⃗⊥ + 𝑣⃗ × 𝐵⃗

)︁
(9)

𝐵′
‖ = 𝐵‖ , 𝐵⃗′

⊥ = 𝛾

(︃
𝐵⃗⊥ − 𝑣⃗ × 𝐸⃗

𝑐2

)︃
(10)
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we find

𝐸′
𝑥 = 𝛾𝐸0

(︂
1 − sin 𝜃

2

𝑣

𝑐

)︂
𝐸′

𝑦 = 𝛾𝐸0
cos 𝜃

2

𝑣

𝑐

𝐵′
𝑥 = 𝛾

𝐸0

2𝑐
cos 𝜃

𝐵′
𝑦 = 𝛾

𝐸0

2𝑐

(︁
sin 𝜃 − 2

𝑣

𝑐

)︁
(11)

Therefore the 𝑧-component of both fields remains zero, while the 𝑥- and
𝑦- components change.

– The condition to impose in order for 𝐸′ ‖ 𝐵′ is the following

𝐸′
𝑦

𝐸′
𝑥

=
𝐵′

𝑦

𝐵′
𝑥

(12)

Which gives the resulting equation for 𝑣/𝑐:

𝑣2

𝑐2
− 5

2 sin 𝜃

𝑣

𝑐
+ 1 = 0 (13)

The solution for which 𝑣 < 𝑐 is:

𝑣

𝑐
=

5 −
√︀

25 − 16 sin2 𝜃

4 sin 𝜃
(14)

• Let us now consider the frame 𝑆, which corresponds to a simple rotation of
the axis w.r.t 𝑆′, no boost. In this frame, 𝐸 = 𝐸̄ ^̄𝑥 and 𝐵̄ = 𝐵̄ ^̄𝑥, with 𝐸̄ and
𝐵̄ constant. Therefore the charge will be subject only to an electric force in
the ^̄𝑥 direction, which will accelerate it but will not change its direction of
motion. The magnetic field will not exert any force on the charge, since at
all times the velocity of the particle will be parallel to 𝐵̄. Let us write the
velocity of the charge as 𝑣 = 𝑣 ^̄𝑥. Newton’s second law will therefore read

𝑞𝐸̄ =
𝑑

𝑑𝑡

𝑚𝑣√︁
1 − 𝑣2

𝑐2

(15)

Given that 𝐸̄ is constant, we can easily integrate the above equation to get

𝑚𝑣√︁
1 − 𝑣2

𝑐2

= 𝑞𝐸̄ 𝑡 + const (16)

We now use the initial condition on the velocity to find the constant. Since
the initial velocity of the charge is 𝑣0, we have const = 𝑚𝑣0√︂

1−
𝑣20
𝑐2

≡ 𝑝0 (where
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we use 𝑝0 to indicate the initial value of (the ˆ̄𝑥 component of) the relativistic
momentum in the 𝑆 frame; not to be confused with the 0- component of the
four vector of the relativistic momentum). Hence we have

𝑚𝑣√︁
1 − 𝑣2

𝑐2

= 𝑞𝐸̄ 𝑡 + 𝑝0 (17)

Squaring the latter and solving for 𝑣, we find

𝑣(𝑡) =
𝑞𝐸̄𝑡
𝑚 + 𝑝0

𝑚√︂
1 +

(︁
𝑞𝐸̄𝑡+𝑝0

𝑚𝑐

)︁2 (18)

This is the velocity of the charge in the frame 𝑆 along the 𝑥̄-axis.

• We can finally integrate once more to find the trajectory 𝑥̄(𝑡)

𝑥̄(𝑡) =

∫︁ 𝑡

0

𝑞𝐸̄𝑡′+𝑝0
𝑚√︂

1 +
(︁
𝑞𝐸̄𝑡′+𝑝0

𝑚𝑐

)︁2
=

𝑚𝑐2

𝑞𝐸̄

⎡⎣√︃1 +

(︂
𝑞𝐸̄𝑡 + 𝑝0

𝑚𝑐

)︂2

−
√︂

1 +
(︁ 𝑝0
𝑚𝑐

)︁2⎤⎦ (19)
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