
SOLUTIONS of Final Exam - RED 2016

Problem 1. Particle annihilation and conservation laws

The incident electron has momentum 𝑝 along the positive x-axis, a kinetic energy of
1 MeV and a rest energy equal to 𝑚𝑐2 = 0.511 MeV. The positron has only rest energy.
Hence the total energy of the initial configuration is

𝐸 = 1 MeV + 2 × 0.511MeV = 2.022MeV . (1)

Relativistic energy is conserved, hence the two photons emerge from the collision each
with energy

𝐸𝛾 =
𝐸

2
= 1.011 MeV . (2)

Correspondingly, the momentum of the photons will be 𝑝𝛾 = 𝐸𝛾/𝑐 = 1.011 MeV/𝑐.
Using conservation of the momentum in the 𝑥-direction, and indicating with ±𝜃 the
angle that the photons make with the 𝑥-axis, we get

𝑝 = 2𝑝𝛾 cos 𝜃 , (3)

giving 𝜃 = cos−1
(︁

𝑝
2𝑝𝛾

)︁
, where 𝑝 is the momentum of the incoming electron. In order

to find the angle, we need to determine the momentum of the incoming electron. We
know its rest mass and its kinetic energy, that we can combine to get its relativistic
energy: 𝐸 = 1.511 MeV. Setting it equal to 𝐸2 = 𝑚2𝑐4 + 𝑝2𝑐2, we get 𝑝 = 1.422 MeV/𝑐.
Plugging it in into the expression for the angle, we find 𝜃 = 45.3°.
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Problem 2. Potentials and Fields of a moving charge

In system 𝒮0 the charge is at rest in the origin, therefore it has only a potential 𝑉0

associated to it, no vector potential. Therefore the four-vector potential will be:

𝐴𝜇
0 =

(︃
𝑞

4𝜋𝜖0

𝑞√︀
𝑥20 + 𝑦20 + 𝑧20

, 0, 0, 0

)︃
(4)

The Lorentz matrix for a boost in the positive x direction reads:

Λ =

⎛⎜⎜⎝
𝛾 −𝛾𝛽 0 0

−𝛾𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
Applying it to the four-vector potential, we get the four-vector potential in system 𝒮:

𝐴𝜇 = 𝛾
𝑉0

𝑐

⎛⎜⎜⎝
1
−𝛽
0
0

⎞⎟⎟⎠
which corresponds to, after transforming also the coordinates with the inverse transfor-
mation (i.e. 𝑥0 = 𝛾(𝑥 + 𝛽𝑐𝑡), 𝑦 = 𝑦0, 𝑧 = 𝑧0):

𝑉 =
1

4𝜋𝜖0

𝑞√︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

, 𝐴𝑥 = −𝜇0

4𝜋

𝑞𝑣√︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

𝐴𝑦 = 0 , 𝐴𝑧 = 0 .

(5)

Now, using

𝐸 = −∇𝑉 − 𝜕𝐴

𝜕𝑡
, 𝐵 = ∇×𝐴 , (6)

we get:

𝐸𝑥 =
1

4𝜋𝜖0

𝑞 (1 − 𝛽2) (𝑥 + 𝛽𝑐𝑡)[︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

]︁3/2 , 𝐸𝑦 =
1

4𝜋𝜖0

𝑞 (1 − 𝛽2) 𝑦[︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

]︁3/2
𝐸𝑧 =

1

4𝜋𝜖0

𝑞 (1 − 𝛽2) 𝑧[︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

]︁3/2
𝐵𝑥 = 0 , 𝐵𝑦 =

𝜇0

4𝜋

𝑞𝑣 (1 − 𝛽2) 𝑧[︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

]︁3/2
𝐵𝑧 = −𝜇0

4𝜋

𝑞𝑣 (1 − 𝛽2) 𝑦[︁
(𝑥 + 𝛽𝑐𝑡)2 + (1 − 𝛽2) (𝑦2 + 𝑧2)

]︁3/2
(7)

2



Now, the force at time 𝑡 = 0 on a test charge 𝑄 passing in that instant by (0, 𝑑, 0) with
velocity 𝑢 = 𝑢�̂�, is given by

𝐹 =
𝑞𝑄

4𝜋𝜖0

(1 − 𝛽2)𝑑

[(1 − 𝛽2)𝑑2]3/2

(︁
1 +

𝑢

𝑐

𝑣

𝑐

)︁
𝑦 (8)

In the case in which 𝑢 = −𝑣, it reduces to:

𝐹 =
1

𝛾

𝑞𝑄

4𝜋𝜖0

1

𝑑2
𝑦 (9)

which is consistent with the result we would find in system 𝒮0, considering that for
𝑢 = −𝑣 the test charge is at rest in system 𝒮0 and the force is perpendicular to the
direction of the boost, hence 𝐹0 = 𝛾𝐹 = 𝑞𝑄

4𝜋𝜖0
1
𝑑2
𝑦
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Problem 3. Field tensor of a capacitor and its Lorentz transformation

In frame 𝒮 there is only a uniform electric field along the �̂� direction, with magnitude
𝜎/𝜖0. The corresponding field tensor is

𝐹𝜇𝜈 =

⎛⎜⎜⎝
0 𝐸𝑥/𝑐 0 0

−𝐸𝑥/𝑐 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 𝜎

𝜖0𝑐
0 0

− 𝜎
𝜖0𝑐

0 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎠
Applying to this field tensor the Lorentz transformation matrix Λ relating the two frames
we get:

𝐹𝜇𝜈 =

⎛⎜⎜⎝
0

(︀
cos2 𝜑 + 𝛾 sin2 𝜑

)︀
𝐸𝑥/𝑐 (1 − 𝛾) cos𝜑 sin𝜑𝐸𝑥/𝑐 0

−
(︀
cos2 𝜑 + 𝛾 sin2 𝜑

)︀
𝐸𝑥/𝑐 0 𝛾𝛽 sin𝜑𝐸𝑥/𝑐 0

− (1 − 𝛾) cos𝜑 sin𝜑𝐸𝑥/𝑐 −𝛾𝛽 sin𝜑𝐸𝑥/𝑐 0 0
0 0 0 0

⎞⎟⎟⎠
This corresponds to the following electric and magnetic fields in frame 𝒮 ′:

𝐸′ =
[︀(︀

cos2 𝜑 + 𝛾 sin2 𝜑
)︀
𝐸𝑥, (1 − 𝛾) cos𝜑 sin𝜑𝐸𝑥, 0

]︀
𝐵′ = [0, 0,−𝛾𝛽 sin𝜑𝐸𝑥/𝑐] (10)

The width of the plates is along the 𝑧- axis, hence perpendicular to the direction of
the boost and will no be affected by it. The length is along 𝑦 so it will be affected.
Specifically, the component of the length parallel to the direction of the boost, 𝑙‖ = 𝑙 cos𝜑
will be contracted by a factor 𝛾 while the perpendicular component, 𝑙⊥ = 𝑙 sin𝜑 will
remain the same. Overall we get

𝑙′ =

√︀
𝛾2 sin2 𝜑 + cos2 𝜑

𝛾
𝑙 . (11)

We can easily see that 𝑙′ = 𝑙 if 𝜑 = 0 and, trivially, 𝛾 = 1, while 𝑙′ = 𝑙/𝛾 if 𝜑 = 90°. This
is in agreement with what we expect for a stick along the 𝑦-axis when you have a boost
in the 𝑥-direction, no boost or a boost in the 𝑦-direction respectively. Notice that the
result for the length in the primed frame can be written also as

𝑙′ =

√︁
1 − 𝛽2 sin2 𝜑 𝑙 (12)

The electric field in the primed frame now has both an 𝑥′- and a 𝑦′- component. It has
𝐸′

𝑧 = 0, so it will be in the 𝑥′𝑦′- plane, making an angle 𝜃𝐸 with the 𝑥′- axis:

𝜃𝐸 = tan−1

(︂
𝐸′

𝑦

𝐸′
𝑥

)︂
= tan−1

(︂
(1 − 𝛾) cos𝜑 sin𝜑

cos2 𝜑 + 𝛾 sin2 𝜑

)︂
(13)

This angle will be zero only if 𝜑 = 0° or 90° (and trivially for 𝛾 = 1); we will get back to
discussing these particular cases after looking at the orientation of the plates.
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Let us now analyze the direction of the plates. As we already discussed when looking
at the Lorentz contraction of 𝑤 and 𝑙, the width is unaffected by the boost, it remains
parallel to the 𝑧′ axis. The length 𝑙 however, if observed from the 𝒮 ′ system will be
in general contracted and also rotated, acquiring a 𝑥′ component. We can find this by
transforming the coordinates of the endpoints of the length. For simplicity let us take
the𝑙- side of the positively charged plate which at time 𝑡 = 0 has one extremum at
𝑥𝜇(1) = (0, 0, 0, 0). This transforms to 𝑥′𝜇(1) = (0, 0, 0, 0) at 𝑡′ = 0. To observe the other

extremum at the same time 𝑡′ = 0 in system 𝒮 ′, we need to transform its coordinates at
some instant 𝑡 (i.e. (𝑐𝑡, 0, 𝑙, 0)) such that the transformed 𝑡′ = 0:⎛⎜⎜⎝

0
𝑥′

𝑦′

𝑧′

⎞⎟⎟⎠ = Λ

⎛⎜⎜⎝
𝑐𝑡
0
𝑙
0

⎞⎟⎟⎠
where Λ is the Lorentz transformation matrix for the boost given at the beginning. This
results in the following three equations:

0 = −𝛾𝛽 sin𝜑 𝑙 + 𝛾𝑐𝑡 (14)

𝑥′ = (𝛾 − 1) sin𝜑 cos𝜑 𝑙 − 𝛾𝛽 cos𝜑 𝑐𝑡 (15)

𝑦′ = ((𝛾 − 1) sin2 𝜑 + cos2 𝜑) 𝑙 − 𝛾𝛽 sin𝜑 𝑐𝑡 (16)

Solving (14) for 𝑡 and substituting into (15) and (16), we get the following spatial
coordinates for the other extremum of the 𝑙-side of the positively charged plate in system
𝒮 ′: (︂

1 − 𝛾

𝛾
sin𝜑 cos𝜑, 1 +

1 − 𝛾

𝛾
sin2 𝜑, 0

)︂
𝑙 (17)

We see that unless 𝜑 = 0° or 90°, or 𝛾 = 1, the plates will have a non-zero 𝑥′ component.
You can also check that the length of this vector is consistent with the contraction
result (11).
We can now check whether the field 𝐸′ will be parallel to the plates, for instance taking
the dot product of 𝐸′ and the vector 𝑙′ with extrema (0, 0, 0) and the point given by (17).
The result is

1 − 𝛾2

𝛾
cos𝜑 sin𝜑𝐸𝑥 𝑙. (18)

which is zero only if 𝜑 = 0° or 90° (and trivially for 𝛾 = 1); indeed those are boosts along
the 𝑥- or 𝑦−𝑎𝑥𝑖𝑠, which, as we know, leave the field perpendicular to the plates given the
configuration at rest. For other values of 𝜑, the electric field will not be perpendicular
to the plates.
A test charge placed inside the capacitor with initial velocity 𝑣 = −𝑣(cos𝜑, sin𝜑, 0)
w.r.t. 𝒮 ′, will experience the following force at 𝑡 = 0:

𝐹 ′ = 𝑞
(︀
𝐸′ + 𝑣 ×𝐵′)︀ =

[︀
cos2 𝜑 + 𝛾(1 + 𝛽2) sin2 𝜑,

(︀
1 − 𝛾(1 + 𝛽2)

)︀
cos𝜑 sin𝜑, 0

]︀
𝑞𝐸𝑥

(19)
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Considering that the initial velocity 𝑣 and 𝐸′ have only components along 𝑥′ and 𝑦′,
and that 𝐵′ is along 𝑧′ (hence 𝑣×𝐵′ has components only along 𝑥′ and 𝑦′), the motion
of the test charge will be in the 𝑥′-𝑦′ plane.
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Problem 4. Tensor notation and gauge freedom

Consider the definition of the field tensor in terms of the four-vector potential

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . (20)

If we now send 𝐴𝜇 → 𝐴𝜇′ = 𝐴𝜇 − 𝜕𝜇𝛼, the new field tensor will be:

𝐹 ′𝜇𝜈 = 𝜕𝜇𝐴′𝜈 − 𝜕𝜈𝐴′𝜇

= 𝜕𝜇𝐴𝜈 − 𝜕𝜇𝜕𝜈𝛼− 𝜕𝜈𝐴𝜇 + 𝜕𝜈𝜕𝜇𝛼

= 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 , (21)

given the symmetry of second derivatives. Inserting the definition of the field tensor in
terms of the four-vector potential into Maxwell’s equation, we get:

𝜕𝜇𝜕
𝜇𝐴𝜈 − 𝜕𝜇𝜕

𝜈𝐴𝜇 = −𝜇0𝐽
𝜈 (22)

Let us rewrite it as:
22𝐴𝜈 − 𝜕𝜈𝜕𝜇𝐴

𝜇 = −𝜇0𝐽
𝜈 (23)

The Coulomb gauge corresponds to ∇ ·𝐴 = 0, therefore to 𝜕𝜇𝐴
𝜇 = 1

𝑐2
𝜕𝑉
𝜕𝑡 . Inserting this

in the latter equation, we get:

22𝐴𝜈 − 1

𝑐2
𝜕𝜈 𝜕𝑉

𝜕𝑡
= −𝜇0𝐽

𝜈 (24)

which choosing 𝜈 = 0 and 𝜈 = 𝑖 (i=1,2,3), can be written as two equations for 𝑉 and
𝐴, respectively:

∇2𝑉 = − 𝜌

𝜖0
, ∇2𝐴− 1

𝑐2
𝜕2𝐴

𝜕𝑡2
+

1

𝑐2
∇𝜕𝑉

𝜕𝑡
= −𝜇0𝐽 . (25)

The equation for 𝐴 can also be written as:

22𝐴 +
1

𝑐2
∇𝜕𝑉

𝜕𝑡
= −𝜇0𝐽 . (26)

.
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