
Semiconductors and electron bands
Fall semester 2016, 04.01.2016, 13:45-16:30

Please note:

• There are 5 problems.

• The numbers of points per sub-problem are indicated on the right.

• There are some fundamental constants and a periodic table on back of
this sheet.

• Please write clearly and readably. Try to be concise.

• Don’t just write the final answer, also include the steps you took to get
there.

• If we ask for a sketch, make sure that it clearly includes the qualitative
features of the matter at hand, and label the axes.

• Write down your name and student number below (we’ll staple all papers
together in the end), and write your last name on each piece of paper.

Name: Student number:

Problem 1 2 3 4 5 Total

Points



List of physical constants

Atomic mass unit, 1 atm.u. 1.66×10−27 kg
Speed of light, c 3.00× 108 m/s

Planck constant, h 6.63× 10−34 Js
~ = h/(2π) 1.05× 10−34 Js

Electron charge, e 1.60× 10−19 C
Electron volt, eV 1.60× 10−19 J

Elektron masse, me 9.11× 10−31 kg
Neutron masse, mn 1.67× 10−27 kg

Proton asse, mn 1.67× 10−27 kg
Vacuum permittivity, ε0 8.85× 10−12 As/Vm
Boltzmann constant, kB 1.38× 10−23 J/K

Rydberg constant, R∞ 1.10× 107 1/m
Rydberg energy, hcR∞ 13.6 eV

Bohr magneton, µB 9.27× 10−24 J/T
Bohr radius, a0 5.3× 10−11 m

Stefan-Boltzmann constant, σ 5.67× 10−8 W/m2K4



1 Short questions

a) Sketch the bandstructures for a semiconductor, an insulator, and a metal.
Indicate the band filling. [3]

b) Assume a monoatomic tight-binding chain. Assume it is divalent, i.e. two
electron per site. It it a metal, insulator, or semiconductor? Explain why.

[3]

c) Give an intuitive argument as to why superconductors have a finite (i.e.
larger than zero) coherence length. [2]

d) Sketch the dispersion relations of the electrons in a one-dimensional
chain, both for solution using the tight-binding approximation, and for
the solution using the nearly-free electron approximation.

e) Imagine a the surface of a superconductor, and a magnetic field outside
the superconductor, parallel to the surface. Sketch the superfluid density
and the magnetic field at the surface as a function of z, where z is the
coordinate perpendicular to the surface. Make the sketch first for a type
I and then for a type II superconductor. [3]

f) In a diatomic chain with N identical particles connected by springs, how
many vibrational normal modes are there? Give a brief argument. [2]

2 1D monatomic chain with springs

Assume a chain with N identical atoms of mass m connected with springs with
spring constant κ. In equilibrium, the atoms are spaced by distance a. Also
assume that the atoms can only move along the chain, and not perpendicular
to it (longitudinal modes).

a) Derive and sketch the dispersion relation. [3]

b) Show that the mode with wave vector k has the same physical meaning
as the mode with wave vector k + 2π/a. (Make an explicit calculation if
necessary.) [3]

c) Derive the number of different normal modes in the chain. [2]

d) What is the density of states g(ω)? (Explicitly calculate it.) Sketch the
density of states. Also sketch the density of states for a diatomic chain
(you do not have to explicitly calculate it). [3]
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e) Find an expression for the specific heat of the chain in the limit of high
temperatures compared to the phonon energies. You can assume that
the the occupation numbers are governed by Bose-Einstein statistics,

fBE(E) =
1

e
E

kBT − 1
.

[3]

3 4-atom long tight-binding ‘chain’

We look at a 4 atom long tight-binding chain. This is quite a good approxi-
mation for some molecules, like 1,3-butadiene (see image below). We ignore
the hydrogen atoms and assume that only the carbon atoms are relevant. We
denote them with the index n, n = 1, 2, 3, 4. They each have one electron in the
outermost electronic shell. The Hamiltonian for the atom at site n (ignoring
the other atoms) is Hn = T + Vn, where T is the standard kinetic part, and
Vn is the Coulomb potential from the ion at site n. We denote the solution
to the Schrödinger equation at site n (ignoring the other atoms) with |n〉, i.e.
Hn|n〉 = E|n〉.

a) What is the full HamiltonianHtotal for one electron on the chain? (Ignore
any electron-electron interaction.) [2]

b) We assume that there is only nearest neighbour interaction and define
t = 〈n|Htotal|m〉 when n, m are nearest neighbours. We also assume that
the orbital functions are orthogonal. Using the Ansatz Ψ =

∑4
n=1 φn|n〉,

derive the Schrödinger equation in Matrix form. Explicitly write down
the matrix equation. Show that the solution of this equation is the ground
state by minimizing the energy functional. [5]

c) How would you solve this to get the energy eigenvalues and eigenfuncti-
ons? (You don’t have to do the calculation.) [1]

d) Guess how the absolute value of the wave function of the lowest energy
state looks like in real space and sketch it. Briefly argue why it should
look like that. [2]
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e) Describe in words what happens to these energy states when you increase
the number of atoms and how you get to the limit of the tight-binding
chain (roughly three sentences). [3]

4 Width of the depletion layer

Calculate the width of the depletion layer in a pn junction. We assume that
the interface of n and p doped semiconductors is at x = 0, and perpendicular
to the x axis, with the n doped one on the negative side. he junction consists of
two same semiconductors with gap Eg and electron doping with concentration
n on one side, and hole doping with concentration p on the other side. We
also assume that we are at temperatures much smaller than the bandgap, but
above the carrier freeze-out.
Let φ(x) be the potential which reflects the bending of the bands, and φ0 the
potential difference across the junction with no applied voltage. We refer to
the width of the depletion layer on the two sides as wn and wp. T Inside the
depletion layer, all the electrons and holes recombine, while outside, none do.

a) Remember Poisson’s equation:

∂2

∂x2
φ(x) =

ρ(x)

ε0εr
,

where ρ(x) is the charge density, ε0 is the vacuum permittivity, and εr is
the relative permittivity. Based on the simple picture for a pn junction
from the lecture, make assumptions for the charge density and write
down the Poisson equation. [3]

b) Solve them to get allow expressions for φ(x) on the negative and positive
side. (Set φ(x) = 0 for x = 0.) You will have integration constants in
these expressions. [3]

c) Obtain the integration constants form boundary conditions. [3]

d) Find an expression for wn and wp. [2]

5 Magnetism in a gas

Consider a gas of monovalent atoms with spin 1/2, and L = 0 in a magnetic
field B. The density of the gas is n. The g-factor is 2.

a) What would be an example for such a gas? [2]
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b) Calculate the magnetisation as a function of B and T . Determine the
susceptibility. [3]

c) Calculate the contribution to the specific heat of this gas due to the
spins. Sketch this contribution as a function of µBB/kBT . [4]

END OF EXAM
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