
Solutions exam st2 Fall/Winter 2012
1. Virial expansion

(a) The expansion of 1/(1−Dλ) is

1

(1−Dλ)
= 1 +Dλ+D2λ2 + . . . (1)

therefore
λ

(1−Dλ)
= λ+Dλ2 +D2λ3 + . . . (2)

(b) We have

B2(T ) = −
∫ D

0

(−1) dr −
∫ ∞
D

0 dr (3)

= D − 0 (4)
= D. (5)

(c) B2(T ) is obviously equal to the coefficient of λ2 of (a), i.e. D .

(d) In this case we have to study the integral

B2(T ) = −
∫ ∞
0

(e−βA/r
α

− 1) dr (6)

= −
∫ R

0

(e−βA/r
α

− 1) dr −
∫ ∞
R

(e−βA/r
α

− 1) dr (7)

where R � 1 . When r → 0 we have −r−α → −∞ , and thus
e−βA/r

α → 0 . Therefore the first integral is limited for all values of
α . On the other hand, when r � 1 we can expand the exponential
to get

e−βA/r
α

− 1 ≈ 1− Aβ

rα
− 1 = −Aβ

rα
. (8)

In this case Eq. 6 is

B2(T ) = something limited +

∫ ∞
R

βA/rα dr (9)

which exist only for α > 1 (already for α = 1 , the integral goes as
a logarithm, and log(x)

x→∞→ ∞ . For α < 1 the integral goes as a
positive power of x , which is also ∞ in the limit x→∞ .)

(e) Since ions interact with a 1/r potential we expect that the virial
expansion would not work.

(f) Small values of α mean that there is a long-ranged interaction be-
tween particles. As many particles feel each other, mean-field theory
is a good alternative.
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2. Ferromagnetism

(a) Mean-field Hamiltonian:

HMF ({si}) = −

(
mB + Jz 〈s〉

∑
i

si

)

(b) Mean-field partition function:

ZMF =
∑

{σi=±1}

e−βHMF({σi}) =
∑

{σi=±1}

∏
i

eβ(mB+Jz〈σ〉)σi

and thus

ZMF =
(
eβ(mB+Jz〈σ〉) + e−β(mB+Jz〈σ〉)

)N
= [2 cosh (β (Jz 〈σ〉+mB))]

N

(c) mean-field free energy:

FMF = −kBT lnZMF = −kBTN ln (2 cosh (β (Jz 〈σ〉+mB)))

(d) mean-field magnetization per spin:

〈σ〉 = − 1

N

∂FMF

∂B
= tanh (β [Jz 〈σ〉+mB])

(e) d = 1

(f) d = 2, self-duality

1. Adsorption to a surface

(a) The possible values of ni are either 0 (empty site) or 1 (filled site).

H = −ε
M∑
i=0

ni −K
∑
〈i,j〉

ninj .

Notice the minus sign, which ensures that for ε,K > 0 the energy is
lowered when the atoms stick to the surface, and to each other.

(b) This is a proof by construction. Given the possible values of ni, one
can make the change of variables ni = (σi + 1)/2, with σi = ±1.
Replacing this in the Hamiltonian and expanding the brackets leads
to:

H = −ε
2

M∑
i=0

σi−
ε

2

M∑
i=0

1−K
4

∑
〈i,j〉

σiσj−
K

4

∑
〈i,j〉

σi−
K

4

∑
〈i,j〉

σj−
K

4

∑
〈i,j〉

1.
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First of all, we can ignore all the constant (independent of σ) terms,
since the energy is always defined up to a constant. Secondly, the
sums over nearest neighbors which depend on a single spin variable
can be converted into sums over all spins by simply multiplying with
the coordination number of the lattice, z. In the case of a square
lattice z = 2. The result is:

H = −ε
2

M∑
i=0

σi −
K

4

∑
〈i,j〉

σiσj −
Kz

4

M∑
i=0

σi −
Kz

4

M∑
i=0

σi,

meaning that the Ising magnetic field can be written as mB = (ε+
Kz)/2, and the spin-spin interaction as J = K/4.

(d) One expects that in the low temperature limit the system is in an
ordered phase in which the energy is minimized. As such, all sites
will be occupied and the probability of occupation will be 〈ni〉 = 1.
In the high temperature regime, thermal fluctuations will dominate,
and each site will be occupied randomly, with a 50% probability
(like in the Ising model in that case where half of the spins points
up, the other half down). Therefore, in this limit, 〈ni〉 = 1/2.

(e) One can apply the usual prescription to compute the average occu-
pation number of site i. After canceling out all possible terms, one
has:

〈ni〉 =
∑
ni exp(βεni)∑
exp(βεni)

=
exp(βε)

1 + exp(βε)
.

In the high temperature limit, β → 0 and 〈ni〉 → 1/2, while for low
temperatures, β →∞ and 〈ni〉 → 1, as expected.
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