
Solution exam stf2 Fall/Winter 2011
1 Adiabatic curve

(a) We have

β =
KN

E
and γ =

N

V
.

Hence along an adiabatic curve one has

dS =
KN

E
dE +

N

V
dV = 0.

This means
dE

dV
= − E

KV

which is solved by
E = cV −1/K

with c being a constant. This can be rewritten as V EK = C2. From
p = NkBT/V = E/ (V K) follows then

p =
cV −1/K

V K
=

c

K

1

V (K+1)/K
.

i.e. pV (K+1)/K = C1. (3 points)

(b) Adiabatic curves go like p ∼ 1/V 5/3 and decrease therefore faster
than isothermes, p ∼ 1/V . (1 point)

2 Entropy of spin system

(a) Energy:

E (n) = mBn−mB (N − n) = (2n−N)mB

Number of configurations:

N (n) =
N !

n! (N − n)!

Entropy:

S (n)

kB
= lnN (n) = lnN !− lnn!− ln (N − n)!

(1 point)

(b) Use of Stirling’s formula leads to

S (n)

kB
≈ N lnN − n lnn− (N − n) ln (N − n) .
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Add and subtract n lnN :

S (n)

kB
≈ N lnN − n lnn− (N − n) ln (N − n) + n lnN − n lnN

leading to

S (n)

kB
≈ −n ln n

N
− (N − n) ln

(
N − n
N

)
or

S (x) ≈ −kBN (x lnx+ (1− x) ln (1− x)) .

(1 point)

(c) S (0) = 0, S (1/2) = kBN ln (2) > 0 and S (1) = 0. From

dS (x)

dx
= S′ (x) = −kBN (lnx− ln (1− x))

one finds S′ (0) = +∞, S′ (1/2) = 0 and S′ (1) = −∞. S (x) has
thus a shape similar to the upper half of a circle. (1 point)

(d) energy:
E (x) = (2x− 1)mBN

minimal energy −mBN for x = 0, maximal energy +mBN for
x = 1. S (E) is an even function and T (E) an odd function with a
singularity at E = 0. (1 point)

(e) Negative temperature, i.e. β < 0. Usually not observed because
spins have kinetic energy or – if not – system equilibrates with sur-
roundings at a common positive temperature. (2 point)

3 Virial expansion

(a) The second virial coefficient is given by

B2 = −2π
∫ D

0

(
e−βW − 1

)
r2dr − 2π

∫ A

D

(
eβU − 1

)
r2dr

leading to

B2 =
2π

3
D3
(
1− e−βW

)
+

2π

3

(
A3 −D3

) (
1− eβU

)
.

(1 point)

(b) We now search for values of β > 0 for which B2 = 0. This leads to
the condition

D3
(
1− e−βW

)
=
(
D3 −A3

) (
1− eβU

)
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that can be rewritten as

e−βW =

(
1− A3

D3

)
eβU +

A3

D3
.

This is always solved for β = 0 but we search here for a finite temper-
ature solution. On both sides of this equation we have monotonously
decaying functions, both have the value 1 for β = 0. The function
on the lhs is concave and goes asymptotically towards 0 for β →∞,
the one on the rhs is convex and goes to −∞ for β → ∞. The
functions on the lhs and rhs thus only cross at a finite value of β, if
the slope at β = 0 of the function on the lhs is more negative than
the one on the rhs. This leads to the condition

−We−βW <

(
1− A3

D3

)
UeβU

and thus

β < − 1

U +W
ln

((
A3

D3
− 1

)
U

W

)
.

Since such a system must have a positive temperature, one has only
to a solution with a finite value of β if

1

U +W
ln

((
A3

D3
− 1

)
U

W

)
< 0.

(2.5 points)

(c) Even if β = 0 this system does not behave like an ideal gas since
most of the higher order virial coefficients (e.g. B3) are in general
not vanishing. (1.5 point)

4 Ferromagnetism

(a) The partition function is given by:

Z =
∑

{si=±1}

e−βH({si}) =
∑

{si=±1}

∏
i

eβmBsi =
(
eβmB + e−βmB

)N
In short

Z = [2 cosh (βmB)]
N

The free energy is thus

F = −kBT lnZ = −kBTN ln (2 cosh (βmB))

Mean magnetization per spin:

m 〈s〉 = − 1

N

∂F

∂B
= m tanh (βmB) .

(2 points)
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(b) Mean-field Hamiltonian

HMF = − (mB + Jz 〈s〉)
∑
i

si.

(1 point)

(c) Comparision between the Hamiltonian from (a) and the mean-field
Hamiltonian shows that one just has to replace mB by mB+Jz 〈s〉.
Hence

Z = [2 cosh (β (mB + Jz 〈s〉))]N

and
〈s〉 = tanh (β (mB + Jz 〈s〉)) .

(2 point)
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