Solution Toets stf2 Fall/Winter 2011

1 Canonical partition function (3 points)

The canonical partion function follows from the summation/integration of the Boltzmann distribution over all degrees of freedom of the system, e.g.

$$Z = \frac{1}{N!h^{3N}} \int e^{-\beta H(\mathbf{q}, \mathbf{p})} d^{3N} q d^{3N} p.$$

Therefore

$$-\frac{\partial}{\partial\beta}\ln Z = \frac{1}{Z}\frac{1}{N!h^{3N}}\int H\left(\mathbf{q},\mathbf{p}\right)e^{-\beta H\left(\mathbf{q},\mathbf{p}\right)}d^{3N}q\,d^{3N}p = \langle E\rangle\,.$$

2 Virial expansion (5 points)

(a) The virial expansion of βp up to second order is given by

$$\beta p = n + B_2 n^2$$

(b) $B_2 = I_1 + I_2 \text{ with }$

$$I_1 = -2\pi \int_{0}^{d} r^2 (0-1) dr = \frac{2\pi d^3}{3}$$

and

$$I_{2} = -2\pi \int_{0}^{2d} r^{2} \left(e^{\beta \varepsilon} - 1\right) dr = -2\pi \left(e^{\beta \varepsilon} - 1\right) \left(\frac{8d^{3}}{3} - \frac{d^{3}}{3}\right) = -\frac{14\pi d^{3}}{3} \left(e^{\beta \varepsilon} - 1\right)$$

3 Partition (2 points)

Possible partitions of the set $\{1, 2, 3, 4\}$:

- $(1) \{1, 2, 3, 4\}$
- $(2) \{2,3,4\},\{1\}$
- $(3) \{1,3,4\}, \{2\}$
- $(4) \{1,2,4\}, \{3\}$
- $(5) \{1,2,3\}, \{4\}$
- $(6) \{1,2\}, \{3,4\}$
- $(7) \{1,3\}, \{2,4\}$
- $(8) \{1,4\}, \{2,3\}$

- $(9) {1}, {2}, {3, 4}$
- $(10) {1}, {3}, {2, 4}$
- $(11) {1}, {4}, {2, 3}$
- $(12) {2}, {3}, {1, 4}$
- $(13) {2}, {4}, {1,3}$
- $(14) {3}, {4}, {1, 2}$
- $(15) {1}, {2}, {3}, {4}$