
Astronomical Relativity 2tI7
Retake Exam

January 23,2A18

Note: Mark every sheet you hand in with your name and student number, and number the
sheets. The clarity of your solutions will factor significantly into the grades. It is not sufficient
to write a few equations. You must defi.ne your variables, draw well-labeled figures where appro-
priate, and explain what you are doing. Use geometrized units (c: G : 1) throughout, unless
specifi.cally instructed otherwise. Note that the instructions are compulsor¡ for instance if you
are instructed to skip mathematical details, lengthy mathemaúical calculations will result in no
points.

1 Problem 1: Gravity as geometry
(a) (t.0 pt) General reiativity describes gravity as geometry. Naivel¡ one would think that this

principle could also be applied to other forces, such as the electromagnetic force. Explain
why a geometric description is not possible for the electromagnetic force.

(b) (1.0 pt) State the equivalence principle. Explain why the equivalence principle is necessary
for a geometric theory of gravity. Explain also why the equivalence principle is wider in
its implications than just the simple statement (in Newtonian language) that, "inertial and
gravitational mass a,re equalt'.
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2 Problem 2: Orbits around a non-rotating black hole
In class we discussed the general properties of orbits of a particle around a non-rotating black
hole. We did this by splitting the ecluation of motion of the particle into a raclial ancl an angular
part. We did not consider the angular part, only the radi¿l part, and this is described by

"_!(dr.\'+%e(r.), (2.1)'-1\¿,t
where the effective potential H,6 is given by

M 12 lvI!2v"ç(r): ---a zrr-È (2.2)

anct t is given by

t:"' .1. (2.3)
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In these equations, r is the radial Schwarzschild coordinate, r is the propeî time of the olbiting
particle, M is the mass of the black hole, e is the total energy (kinetic * potential energy) of the
orbiting particle divideci by its rest mass, and I is the orl¡ital angnlar momentum of the orbiting
particle divided by its rest mass. Both e anð. !. are conservecl quantities, arising from Killing
vectors.

(a) (t.0 pt) Derive expressions for e and / in terms of only Schwalzschiid. coordinates, proper
time, and lVl.

(b) (1.0 pt) The diagram below (this is actually Fig. 9.2 from Hartle) shows a typical example
of the behavioul of the effective potential lãe as a function of Schwarzschild r coordinate.
Given V"s, the properties of the orbit of the orbiting particle are determined by the value
of t. Now consider the following 4 possible orbits: (i) a stable circular orbit; (ii) a rosette
orbit; (üi) a scattering orbit; (iv) a plunge orbit. For each of these 4 cases, make a sketch
of the orbit, and of where t is lying with respect to the effective potential as shown in the
diagram (so you need to make 2 sketches for each of the 4 orbits). Do not use any equations.

(c) (t.0 pt) Show that the raclius of the innermost stable circular orbit aroturd the black hole is
given by &sco :6M.
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3 Problem 3: A model FR.W {Jniverse
Consider a Fbiedman-Robertson-Walker model Universe where the geometry is described by the
line element

d.sz : -d,t2 + (tlto)[h2 + d,gz + d,zz], (3.1)

where ú6 is a constant. It obeys the Fliedman equation

¿", -BTP o, : -k, (3.2)
.)

where ø is the scale factor, p is the densit¡ and the constant Iç : -1,0, or *L depending on the
geometry.

(a) (0.5 pt) Is this an open, closed or fl.at universe?

(b) (0.5 pt) Show that the scale factor in this Universe evolves with time as

(3.3)

(c) (1.0 pt) Show that the density in this Universe evolves with time as

,@:# (3.4)

,(,): (*)*
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4 Problem 4z A closed, matter-dominated universe
'We know that for much of its past history our Universe was matter-dominatecl, and this motivates
investigating a matter-dominatecl universe. Here we are going to study a matter-dominatecl
univetse with closed geometry. The metric for a closed universe is given on the formula sheet.
For a closed universe that is matter-dominated, the scale factor a and the time f can be expressed
as a frmction of a parameter q, â,s follows:

a(rù: CI

2Ho(A * I)t/z
o

(4.1)

t(rù:
2Ho(A - I)s/z

(4.2)

(c) (0.5 pt) At the moment of the Big Crunch, will this whole spatially finite universe be visible
to the observer? Will this also be the case before the Big Crunch? If so, when? Explain
yotu answers using the spacetinr.e diagram ühat you made in cluestion b.

(d) (0.5 pt) In a universe with this geometr¡ travel along a geod.esic woulcl eventually bring
the tr¿veller back to the point of departure. Coulcl an observer make this trip in the time
available between the Big Bang and the Big Crunch? Derive ancl explain your answer using
the spacetime diagram that you constructecl, without complex calculations. (Hint: It is
helpful to begin by consid.ering (and sketching in youl spacetime cliagram) the worldline of
a light ray emitted at the Big Bang).

(1 - cos4)

(q - sinri),

where the parameter ?j runs from 0 to 2n.

(a) (0.5 pt) Show that the metric for this universe can be e,rpressed as

dsz : a2(tù l-¿rt' + cJx2 + sin2 y(d02 + sinz e a6\1. (4.a)

(b) (0.5 pt) Using the metric in this form, q canbe usecl as ¿ time coordinate, and ¡ as comoving
rad.ial spatial coordinate. Draw an ?-x spacetime diagram indicating the Big Bang, Big
Crrinch, anti the time of ma-ximum expãñiõn=lDlfw also the future light cone of a comoving
observer at tÌre moment of the Big Bang, antl the past light coriGÎiñêiãñe observer at the
moment of the Big Crunch. nffiiõ-tfre past light cone of this observer at the moment of
maximum expanäóllilxplain why you d.raw the light cones this way.
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Linearized Plane Gravitational Wave

cls2 : -cltz * dxz ¡ dyz + ctzz * hoBclx"clxþ

where (rows and columns in t , x, ! , z ordet)

for a wave propagating in the ¿-direction.

Friedman-Robertson-Walker Cosmological Models
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THE GEODESTC EQUATTON

o Lagrangian for the Geodesic Equation of a test particle

t (r!1.."\ / . . dxo cl¡ß' r/2

\do' ):l-s"orn#;)
where ø is an arbitrary parameter along the world line xo : xo (o) of the geodesic.

r Geodesic equation for a test particle (coordinate basis)

cl2xo rcy rlxþ clxY cltf
,tZ - -' u, i; 

"ï, or ; : -rfiruþ uY

where z is the proper time along the geodesic and ua : clxa /clr are the coordinate basis components of the
four-velocity so that u'u : -1. The Chlistoffel symbols lþ, follow from Lagrange's equations or from the
general formula (8'19). The geodesic equation for light ruyriák"r the same form with z råplaced by an affine
parameter and u .u : 0.

¡ Conserved euantities

6.u:constant

ll"it g is a Killing vector, e.8., €o : (0, 1, 0, 0) in a coordinare basis where rhe merdc gqB@)is independenrof¡'.



¡MPORTANT SPACETIMES (geometrized units)

Flat Spacetime

Cartesían Coordinates

dsz : -dt2 ¡ dx2 + dyz + ctz2 : rToBclxodxþ

Spatial Spherical Polar Coordinates

ds2 : -cltz + drz + r2de2 + 12 sin2 ed42

Static, Weak Field Metric

ctsz : -(t + 2a@\¡ dt2 + (1 - 2a@\)(dx2 + dyz + dz2), (@("{',) << 1)

Schwarzschild Geometry

Schwarzsch il d Coordínates
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Kerr Geometry

-''tzrvt (-av' + au=) + 12(de2 + sin2 0ct62¡

ds2 : - (t -t#) ,,, -o* oiìt" t 
dódt + * 0,, + p2ct02

+ (rt +a2 +2M 
rn2 *in2P\

\ 
t;.- 

)sin2eao2'

a

where

a: J/M, p2 =12 +a2cos2o, L:12 -2Mr iaz


