Astronomical Relativity 2017
Retake Exam

January 23, 2018

Note: Mark every sheet you hand in with your name and student number, and number the
sheets. The clarity of your solutions will factor significantly into the grades. It is not sufficient
to write a few equations. You must define your variables, draw well-labeled figures where appro-
priate, and explain what you are doing. Use geometrized units (¢ = G = 1) throughout, unless
specifically instructed otherwise. Note that the instructions are compulsory, for instance if you
are instructed to skip mathematical details, lengthy mathematical calculations will result in no
points.

1 Problem 1: Gravity as geometry

(a) (1.0 pt) General relativity describes gravity as geometry. Naively, one would think that this
principle could also be applied to other forces, such as the electromagnetic force. Explain
why a geometric description is not possible for the electromagnetic force.

(b) (1.0 pt) State the equivalence principle. Explain why the equivalence principle is necessary
for a geometric theory of gravity. Explain also why the equivalence principle is wider in
its implications than just the simple statement (in Newtonian language) that “inertial and
gravitational mass are equal”.



2 Problem 2: Orbits around a non-rotating black hole

In class we discussed the general properties of orbits of a particle around a non-rotating black
hole. We did this by splitting the equation of motion of the particle into a radial and an angular
part. We did not consider the angular part, only the radial part, and this is described by
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In these equations, r is the radial Schwarzschild coordinate, T is the proper time of the orbiting
particle, M is the mass of the black hole, e is the total energy (kinetic + potential energy) of the
orbiting particle divided by its rest mass, and £ is the orbital angular momentum of the orbiting
particle divided by its rest mass. Both e and £ are conserved quantities, arising from Killing
vectors.

(a) (1.0 pt) Derive expressions for e and £ in terms of only Schwarzschild coordinates, proper
time, and M.

(b) (1.0 pt) The diagram below (this is actually Fig. 9.2 from Hartle) shows a typical example
of the behaviour of the effective potential V,g as a function of Schwarzschild = coordinate.
Given V,g, the properties of the orbit of the orbiting particle are determined by the value
of £. Now consider the following 4 possible orbits: (i) a stable circular orbit; (ii) a rosette
orbit; (iii) a scattering orbit; (iv) a plunge orbit. For each of these 4 cases, make a sketch
of the orbit, and of where £ is lying with respect to the effective potential as shown in the
diagram (so you need to make 2 sketches for each of the 4 orbits). Do not use any equations.

(c) (1.0 pt) Show that the radius of the innermost stable circular orbit around the black hole is
given by Risco = 6M.
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3 Problem 3: A model FRW Universe

Consider a Friedman-Robertson-Walker model Universe where the geometry is described by the
line element
ds® = —dt? + (t/to)[dx? + dy® + d2?], (3.1)

where tg is a constant. It obeys the Friedman equation
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where a is the scale factor, p is the density, and the constant k = —1, 0, or +1 depending on the

geometry.

(3.2)

(a) (0.5 pt) Is this an open, closed or flat universe?

(b) (0.5 pt) Show that the scale factor in this Universe evolves with time as

a(t) = (%)l (3.3)

(¢) (1.0 pt) Show that the density in this Universe evolves with time as
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4 Problem 4: A closed, matter-dominated universe

We know that for much of its past history our Universe was matter-dominated, and this motivates
investigating a matter-dominated universe. Here we are going to study a matter-dominated
universe with closed geometry. The metric for a closed universe is given on the formula sheet.
For a closed universe that is matter-dominated, the scale factor a and the time ¢ can be expressed
as a function of a parameter 7, as follows:
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where the parameter 1 runs from 0 to 2.
(a) (0.5 pt) Show that the metric for this universe can be expressed as
ds? = a*(n) [—dn? + dx? + sin® x(d6? + sin? ¢ dé?)] . (4.3)

(b) (0.5 pt) Using the metric in this form, 77 can be used as a time coordinate, and x as comoving
radial spatial coordinate. Draw an 7—y spacetime diagram indicating the Big Bang, Big
Crunch, and the time of maximum e:?m% also the future light cone of a comoving
observer at the moment of the Big Bang, and the past light cone of the samie observer at the
moment of the Big Crunch. Draw also the past light cone of this observer at the moment of
maximum expansion. Explain why you draw the light cones this way.

(c) (0.5 pt) At the moment of the Big Crunch, will this whole spatially finite universe be visible
to the observer? Will this also be the case before the Big Crunch? If so, when? Explain
your answers using the spacetime diagram that you made in question b.

(d) (0.5 pt) In a universe with this geometry, travel along a geodesic would eventually bring
the traveller back to the point of departure. Could an observer make this trip in the time
available between the Big Bang and the Big Crunch? Derive and explain your answer using
the spacetime diagram that you constructed, without complex calculations. (Hint: It is
helpful to begin by considering (and sketching in your spacetime diagram) the worldline of
a light ray emitted at the Big Bang).



Linearized Plane Gravitational Wave

ds* = —dt® + dx® + dy? + dz® + hopdx®dxf

where (rows and columns in ¢, x, y, z order)
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for a wave propagating in the z-direction.
Friedman—Robertson-Walker Cosmological Models
sin? x closed
ds? = —di® +a2(t) | dx® +{ 2 (d6? + sin®6d¢?) |, flat
sinh? open
2 k=41, closed
ds? = —dt* + @) l: > +r?(do” + sin® 9d¢2)] , | k=0, flat
1—kr k = —1, open

THE GEODESIC EQUATION

o Lagrangian for the Geodesic Equation of a test particle
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where o is an arbitrary parameter along the world line x* = x%(o’) of the geodesic.

» Geodesic equation for a test particle (coordinate basis)
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where 7 is the proper time along the geodesic and u® = dx®/dt are the coordinate basis components of the
four-velocity so that u - u = —1. The Chuistoffel symbols ng follow from Lagrange’s equations or from the

general formula (8.19). The geodesic equation for light rays takes the same form with t replaced by an affine
parameter andu - u = O

* Conserved Quantities

& - u = constant

thell'e $isa Killing vector, e. g.,&% = (0, 1, 0, 0)in a coordinate basis where the metric gap (x) is independent
or x°.




IMPORTANT SPACETIMES (geometrized units)

Flat Spacetime

Cartesian Coordinates

ds® = —dt? + dx* + dy2 +d7t = naﬁdx“dxﬁ

Spatial Spherical Polar Coordinates

ds? = —dt* + dr* 4+ r?d6* + r*sin® 0d¢”

Static, Weak Field Metric

dst = —(1 4+ 20N dt? + (1 — 20N dx? +dy? +dz%), (PG < 1).

Schwarzschild Geometry

Schwarzschild Coordinates
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Eddington-Finkelstein Coordinates
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Kruskal-Szekeres Coordinates
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ds? = (—dv2 + dUz) + r2(d6? + sin? 0d¢?)

Kerr Geometry
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a=J/M, pzzrz—i—azcosz@, A=r2—2Mr+a?
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