Put your name and student number!

Useful formulae:

Solar mass	$M_{\odot} = 2 \times 10^{30} \ kg$
Solar radius	$R_{\odot} = 7 \times 10^5 \ km$
Earth' mass	$M_{\oplus} = 6 \times 10^{24} \ kg$
Earth' radius	$R_{\oplus} = 6370 \ km$
Distance Sun – Earth	$1 AU = 1.5 \times 10^8 km$
Gravitational constant	$G = 6.7 \times 10^{-11} \ m^3 kg^{-1}s^{-2}$
Boltzmann constant	$k = 1.4 \times 10^{-23} J/K$
Planck constant	$\overline{h} = 1 \times 10^{-34} J s$
speed of light	$c = 3 \times 10^5 \ km/s$
unit cross section	$(\bar{h}c)^2 = 0.4 \times 10^{-27} \ GeV^2 cm^2$
millibarn	$mb = 10^{-27} \ cm^2$
electron-volt	$1 eV = 1.6 \times 10^{-19} J$
atomic mass unit	1 amu = 931 MeV
proton mass	$m_p c^2 = 938 MeV$
electron mass	$m_e c^2 = 510 \ keV$
neutron mass	$m_n c^2 = 940 MeV$
pion mass	$m_{\pi}c^2 = 140 MeV$
W-boson mass	$M_W c^2 = 80 GeV$
muon mass	$m_{\mu}c^2 = 106 MeV$
muon lifetime	$\tau = 2.2 \ \mu s$
elementary charge	$1.6 \times 10^{-19} C$
EM-constant	$\alpha = \frac{1}{137}$
Avogadro's number	$N_A = 6 \times 10^{23}$

1. Sun's attractive force.

- 1.a Use Newtonian gravity to determine the escape velocity for a particle at the surface of the Sun.
- 1.b After a core collapse to a neutron star, the radius of the Sun is reduced to 15 kilometers. What would then be the escape velocity?
- 1.c Assuming neutrinos have a mass of $m_V c^2 = 1 eV$, what is the kinetic energy corresponding to the velocity obtained in answer 1.b?
- 1.d How does the energy obtained in answer 1.c compare to the temperature of the relic neutrino background T = 1.9 K?

2. Physics in the Earth.

- 2.a Use the Virial theorem to estimate the temperature of the Earth' core.
- 2.b Assuming that the Earth is a perfect black body, the energy density can be expressed as $\rho = \frac{\pi^4}{15} \frac{(kT)^4}{\pi^2 (\bar{h}c)^3}$. Determine the energy emitted per second per unit area.
- 2.c The total energy emitted per second by the Sun is $L_{\odot} = 4 \times 10^{26} W$. How much energy per second per unit area arrives on Earth?
- 2.d Compare the results obtained in answers 2.b and 2.c (qualitative answer).

3. Neutrino telescopes

3.a The cross section for a neutrino to interact with a nucleon at rest is

 $\sigma = 0.5 \times 10^{-38} \frac{E}{GeV} cm^2$, where *E* is the energy of the neutrino. Assuming a uniform density of the Earth, above which energy the neutrino has a 50% probability to be absorbed in the Earth?

3.b The energy loss of a muon can be parameterized as $-\frac{dE}{dx} = a + bE$, where *E* is the energy of the muon, $a = 0.2 \text{ GeV } m^{-1}$ and $b = 4 \times 10^{-4} m^{-1}$. Above which energy the muon has a 50% probability to traverse the Earth?

4. Atmospheric muons.

- 4.a Muons can be produced by cosmic ray interactions in the Earth' atmosphere. What are the two main steps that lead to the production of a muon?
- 4.b Considering the finite lifetime of a muon, what should be the energy of a muon to survive with 50% probability from a production altitude of 10 km to sea level?
- 4.c Assuming that the cross section for a muon–nucleus interaction is $\sigma = 0.1 mb$ determine the number of interaction lengths between the altitude of 10 km and sea level.
- 4.d Considering the decay and interaction probabilities, what would happen to the muon as a function of its energy (qualitative answer)?

5. Cosmic rays and neutrinos.

- 5.a High-energy cosmic rays can interact with relic neutrinos which have a characteristic temperature of 1.9 *K*. What is the energy of these background neutrinos assuming the neutrino has zero mass?
- 5.b Assuming a head-on collision between a high-energy cosmic ray and a mass less relic neutrino, what is the energy threshold of a proton for the reaction $p + \overline{v}_e \rightarrow n + e^+$?
- 5.c What would be the energy threshold if the neutrino has a mass of 0.2 eV?
- 5.d The cross section for the neutrino–proton interaction is $\sigma = (\bar{h}c)^2 \frac{\alpha^2}{(M_W c^2)^4} s$, where M_W is the rest mass of the W-boson. Assuming that the density of the anti-electron neutrinos is $50 \ cm^{-3}$, what is the mean-free path of such a high-energy proton in the Universe?