
Radiative Processes in Astrophysics, Fall 2012:

solution of the problems

Dr Elena Maria Rossi

December 21, 2012

1. This was identical to the Homework for the 24th of September,
but for the closer distance of the planet to the star. We take the
same-major axis as a mean distance from the star.

• The incident light on the Jupiter-like planet is

Lin = L�
πR2

jupiter

4πa2
51p

= 8.7 × 1027 erg/s.

Thus, the reflected light is

Lrifl = 0.1 × Lin = 2.2 × 10−6L� = 8.7 × 1027 erg/s.

The peak is given by the Wien despacement law:

λmax = 0.29/T� cm ≈ 500 nm,

where T ≈ 5800K is the effective temperature of the Sun. This is
optical light.

• 90% of the incident light is absorbed and re-emitted as black body
so

0.9 × Lin = 4πR2
jupiterσT 4.

The effective temperature is thus

T = 1.2 × 103K,

the planet is indeed hotter than our Jupiter! The peak wavelength
is ' 2.4 µm, in the infrared. NOTE: As I said 1010 times νmax 6=
c/λmax!

2. This is exercise 1.1 in the book plus the knowldge and under-
standing of the definition of Intensity and Flux. We consider the
flux from the pinhole (our source) measured on the film plane (our de-
tector) at some location L sin(θ) above the perpendicular to the pinhole.
From the definiton of intensity and flux, the flux at the film plane is

Fph = I(θ) cos θ dΩ, (1)
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where the cos θ takes care of the fact that the film plane at that location
is not perpendicular to ray that carries I(θ). dΩ is the solid angle under
which the point on that film plane sees the aperture:

dΩ =
A cos θ

r2
=

π(d/2)2 cos θ

r2
,

where A = π(d/2)2 is the pinhole area and r = L cos θ is the distance
of our detector from the source. Putting together things you have the
answer. The observed flux form the galactic plane can be instead written
as

Fgal = I(θ)dΩ, (2)

here there is NO cos θ because the detector is now already perpendicular
to the ray that carries I(θ) :
this is the only difference with respect to Fph (see eq.1).
The solid angle under which we observe the galaxy is dΩ = A cos θ/D2.
NOTE: the projected area of an object is A× cos θ not A× cos θ2, beacuse
only one length is projected (the one not in the plane of the sky).

3. See solution of Homework for the 15 of November “Emission
from a gamma ray burst afterglow” on my webpage. An basic
understanding of synchrotron emission from a power-law distri-
bution of particles is required. See also Homework for the 12th
of November. The only difference was that the Specific Flux should have
been calculated at the cooling frequency νc (corresponding to νc) and not
at νm (corresponding to νm). But that’s very easy because the specific
power of a single electron is infact independent on γ:

Pc,ν =
(Γ2P ′

s)
Γν′

c

=
4
3

r2
ecγ

2
cB2Γ
ν′
c

=
r2
ecB

2Γ
νL

,

where P ′
s is eq.4 in formulae sheet averaged over pitch angles, ν′

c = 4/3γ2
c νL

is the cooling frequency in the comoving frame and νc = Γν′
c is the cooling

frequency in the observer frame (Doppler effect). Therefore, the power is
the same for an electron with γm or γm. We now multiply the power of a
single electron by the TOTAL number of electrons Ntot with γ = γc and
devide by the distance D to the source square:

Fc =
Pc,νNtot

4πD2
=

Pc,νN(γc)γcV
′

4πD2
,

where V ′ is the comoving volume of the jet and N(γc)×γc is the comoving
number density of electrons with γ = γc. Note that obviously the total
number Ntot is Lorentz invariant: equal in all frames, so we do not need
to transform it.

4. For the the first 3 questions see exercise 5.1 and its solution
in the book. The spectrum goes from optically thin bremsstrahlung
(eq.1 on the sheet) to blackbody when is completely optically thick at all
frequencies. The temperature remains the same, only the density increases
as the cloud collapses. The spectrum evolves as plotted in Ghisellini’s
notes in figure 2.2, page 33. If scattering is important the optically thick
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spectrum becomes a “modified black body spectrum”, given by eq.10 on
the formulae sheet. The answer to the last question should have
been known from exercise 7 in the second mock examination and
in exercise 1.10 in the book.

5. • The energy (in energy dimension) associated with K = 1 → K = 0
transition is

Eph = (Erot(1) − Erot(0)) = 2B × hc ≈ 1.7 × 10−14erg = 0.01 eV,

the wavelength is

λ =
h c

Eph
=

1
2B

= 0.12 mm

. It is not observable from earth, see figure in formulae sheet.

• The ratio of the two rate is simply

A1,0n1

γ1,0n1n
=

A1,0

γ1,0n
= 0.07,

the emission rate is dominated by collisions.

• Statistical equilibrium means dn1
dt = 0. Taking only the leading tran-

sition rates we write
(

dn1
dt

)
coll,ex

+
(

dn1
dt

)
coll,dex

' 0, from which

γ0,1 = γ1,0
n1

n0
,

where in thermal equilibrium the occupation fraction is

n1

n0
=

g1

g0
e−Eph/kbT ≈ 0.67.

Therefore γ0,1 = 10−11 cm3 s−1.

• Again dn1
dt = 0 means implies more precisely

(
dn1
dt

)
coll,ex

= −
(

dn1
dt

)
coll,dex

+
A1,0n1, We thus get

n1

n0
=

γ0,1

γ1,0

(
1

1 + ncrit/n

)
where ncrit = A1,0/γ1,0.
If n � ncrit, the level population approaches the Boltzmann ratio we
found before n1

n0
= γ0,1

γ1,0
. If n � ncrit, the ratio is

n1

n0
=

γ0,1

γ1,0
(n/ncrit),

with n/ncrit � 1: the upper level is under-populated.
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