Differentiable manifolds II – 2022 Final Exam

Wednesday June 15 2022, 14:15-17:00.

This exam has 3 questions on 2 pages. The total number of points to earn is 45. The grade for the exam will computed as grade $= 1 + \frac{\text{number of points}}{5}$. Good luck!

1. Consider the *n*-sphere in \mathbb{R}^{n+1} :

$$\mathbb{S}^{n} := \{ x \in \mathbb{R}^{n+1} : \|x\|^{2} = \sum_{i=1}^{n+1} x_{i}^{2} = 1 \}.$$

The space $\mathbb{S}^n \times \mathbb{R}^{n+1}$ has the structure of a (trivial) vector bundle over \mathbb{S}^n with projection map $\Pi : \mathbb{S}^n \times \mathbb{R}^{n+1} \to \mathbb{S}^n$ given by $\Pi(p, v) = p$. Addition and scalar multiplication are defined by

 $(p, v_1) + (p, v_2) = (p, v_1 + v_2), \quad \lambda \cdot (p, v) = (p, \lambda v), \lambda \in \mathbb{R}.$

Consider the closed embedded submanifold

$$T := \left\{ (p, v) \in \mathbb{S}^n \times \mathbb{R}^{n+1} : \langle p, v \rangle_{\mathbb{R}^n} = 0 \right\} \subset \mathbb{S}^n \times \mathbb{R}^{n+1},$$

where $\langle p, v \rangle_{\mathbb{R}^{n+1}} := \sum_{i=0}^{n} p_i v_i$ denotes the standard inner product on \mathbb{R}^{n+1} .

a. (5pt) Prove that T is closed under addition and scalar multiplication in $\mathbb{S}^n \times \mathbb{R}^{n+1}$ and that the restriction $\Pi: T \to \mathbb{S}^n$ is surjective.

Recall that the coordinate projections

$$\operatorname{pr}_i: \mathbb{R}^{n+1} \to \mathbb{R}, \quad x = (x_1, \cdots, x_{n+1}) \mapsto x_i,$$

restrict to functions $\operatorname{pr}_i : \mathbb{S}^n \to \mathbb{R}$ and are elements of $C^{\infty}(\mathbb{S}^n)$. For $p \in \mathbb{S}^n$ we denote by $T_p \mathbb{S}^n$ the tangent space at p and by

$$T\mathbb{S}^n := \{ (p, v_p) : p \in \mathbb{S}^n, v_p \in T_p \mathbb{S}^n \},\$$

the tangent bundle of \mathbb{S}^n .

b. (5 pt) Let $v_p \in T_p \mathbb{S}^n$ be a derivation at p. Show that the map

$$\alpha: T\mathbb{S}^n \to \mathbb{S}^n \times \mathbb{R}^{n+1}, \quad (p, v_p) \mapsto (p, v_p(\mathrm{pr}_1), \cdots, v_p(\mathrm{pr}_{n+1})),$$

maps $T\mathbb{S}^n$ into the subspace T.

We consider $T\mathbb{S}^n$ with its usual vector bundle structure and projection map $\pi: (p, v_p) \mapsto p$.

c. (5 pt) Using that the inclusion $\iota : \mathbb{S}^n \to \mathbb{R}^{n+1}$ is a smooth embedding, prove that $\alpha : T\mathbb{S}^n \to T$ is a diffeomorphism and that

$$\Pi \circ \alpha = \pi, \quad \alpha(\lambda(p,v)) = \lambda \alpha(p,v), \quad \alpha((p_1,v_1) + (p_2,v_2)) = \alpha(p_1,v_1) + \alpha(p_2,v_2)$$

Conclude that T admits the structure of a smooth vector bundle over \mathbb{S}^n and that $T \simeq T \mathbb{S}^n$.

2. Let (M,g) be a compact oriented *n*-dimensional Riemannian manifold with boundary ∂M and volume form ω_g . The volume of M is defined to be $\operatorname{vol}(M) := \int \omega_g$. Recall the *divergence* operator which for a vector field X is defined by $\operatorname{div}(X)\omega_g = \mathrm{d}\beta(X)$. Here $\beta : \mathscr{X}(M) \to \Omega^{n-1}(M)$ is the map

 $\beta(X)(X_1,\cdots,X_{n-1})=\omega(X,X_1,\cdots,X_{n-1}).$

For vector fields $X, Y \in \mathscr{X}(M)$ we write $\langle X, Y \rangle_g$ for $g(X, Y) \in C^{\infty}(M)$. Recall that the Riemannian metric g induces isomorphisms

$$\flat : \mathscr{X}(M) \to \Omega^1(M), \quad : \Omega^1(M) \to \mathscr{X}(M),$$

determined, for $X \in \mathscr{X}(M)$ and $\omega \in \Omega^1(M)$, by

$$\langle X^{\flat}, \omega \rangle_g := \omega(X) := \langle X, \omega^{\sharp} \rangle_g.$$

 $\mathbf{2}$

The gradient of $f \in C^{\infty}(M)$ is the vector field grad f defined by

$$\operatorname{grad} f := (\mathrm{d} f)^{\sharp}, \quad \langle \operatorname{grad} f, X \rangle_g := \mathrm{d} f(X) = X f, \quad \forall X \in \mathscr{X}(M)$$

a. (5pt) Show that for all $f \in C^{\infty}(M)$ we have the identity

$$\operatorname{div}(fX) = f\operatorname{div}(X) + \langle \operatorname{grad} f, X \rangle_g$$

The scalar Laplacian is the map

$$\Delta: C^{\infty}(M) \to C^{\infty}(M), \quad f \mapsto \operatorname{div}(\operatorname{grad} f).$$

As before N denotes the outward unit normal to ∂M .

b. (5 pt) Prove Green's identities for $f, h \in C^{\infty}(M)$:

$$\int_{M} f \Delta h \omega_{g} + \int_{M} \langle \operatorname{grad} f, \operatorname{grad} h \rangle_{g} \omega_{g} = \int_{\partial M} f N(h) \eta_{g}$$

and

$$\int_{M} (f\Delta h - h\Delta f)\omega_g = \int_{\partial M} (fN(h) - hN(f))\eta_g.$$

Here η_g denotes the induced volume form on ∂M and N(f) denotes the function obtained by the action of the vector field N on the function f.

c. (5 pt) Let (M, g) be a compact oriented Riemannian manifold with boundary and volume form ω_g . Let N be its outward pointing normal vector field. Prove that

$$\operatorname{vol}(\partial M) = \int_M \operatorname{div}(N) \omega_g$$

$$VOI(OIM) = \int_M div(1^2) dy$$

$$\mathbb{B}^{n+1} := \left\{ x \in \mathbb{R}^{n+1} : \|x\| \le 1 \right\},\$$

denote the closed unit ball \mathbb{B}^{n+1} in \mathbb{R}^{n+1} . The boundary of \mathbb{B}^{n+1} is the *n*-sphere \mathbb{S}^n as defined in Exercise 1. We equip \mathbb{B}^{n+1} with the Riemannian metric induced from the Euclidean metric

$$g(X,Y) := \sum_{i=1}^{n+1} X_i Y_i, \quad X,Y \in \mathscr{X}(\mathbb{R}^{n+1}), \quad X = \sum_{i=1}^{n+1} X_i \frac{\partial}{\partial x_i}, \quad Y = \sum_{i=1}^{n+1} Y_i \frac{\partial}{\partial x_i},$$

on \mathbb{R}^{n+1} .

d. (5 pt) Using the outward pointing normal $N = \sum_{i=1}^{n+1} x_i \frac{\partial}{\partial x_i}$, prove the equality

$$\operatorname{vol}(\mathbb{S}^n) = (n+1)\operatorname{vol}(\mathbb{B}^{n+1})$$

3. Let (M, g) be a compact connected oriented Riemannian manifold with volume form ω_g . Let $[a,b] \subset \mathbb{R}, \gamma : [a,b] \to M$ a smooth curve and $\omega \in \Omega^1(M)$ a smooth one form. The line integral of ω along γ is defined as

$$\int_{\gamma}\omega:=\int_a^b\gamma^*\omega.$$

The form ω is conservative if $\int_{\gamma} \omega = 0$ for all smooth curves $\gamma : [a, b] \to M$ with $\gamma(a) = \gamma(b)$.

a. (5 pt) A vector field X is conservative if $X^{\flat} \in \Omega^{1}(M)$ is conservative. Prove that X is conservative if and only if there exists a function $f \in C^{\infty}(M)$ such that $X = \operatorname{grad} f$.

Suppose that (M, g) is an oriented 3-dimensional Riemannian manifold. Define

$$\operatorname{curl}: \mathscr{X}(M) \to \mathscr{X}(M), \operatorname{curl}(X) := \beta^{-1} \mathrm{d} X^{\flat}.$$

Here $\beta : \mathscr{X}(M) \to \Omega^2(M)$ is as defined in Problem 2.

Recall that the first de Rham cohomology space $H^1_{dR}(M)$ is defined as

$$H^1_{dR}(M) := \{ \omega \in \Omega^1(M) : \mathrm{d}\omega = 0 \} / \{ \mathrm{d}f : f \in C^\infty(M) \}.$$

b. (5 pt) Assume that $H^1_{dR}(M) = 0$. Prove that X is conservative if and only if $\operatorname{curl}(X) =$ **N**

Let