MEASURE THEORY, MAY 2020

Exam 05/28/2020 (max 100 points)

Question 1 [10 points] Let λ denote Lebesgue measure on \mathbb{R} . Let $\mathcal{M}^+(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ be the space of non-negative measurable funtions on \mathbb{R} . Prove or disprove the following statement: There exist functions $f_1, f_2, \ldots \in \mathcal{M}^+(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ such that

- $f_n \to f$ pointwise as $n \to \infty$,
- $\int f_n d\lambda = \frac{1}{n}$ for all $n \in \mathbb{N}$
- $\int f d\lambda = 1$.

Question 2 [30 points] Let $X = (0, 1] \cap \mathbb{Q}$ and define

$$\mathcal{I} = \{(a,b] \cap \mathbb{Q} : 0 \leq a \leq b \leq 1, \ a,b \in \mathbb{Q}\}$$

$$\mathcal{A} = \left\{ \bigcup_{i=1}^{n} I_i : n \in \mathbb{N}, \text{ and } I_1, \dots, I_n \in \mathcal{I} \right\}.$$

- (1) Prove that \mathcal{A} is an algebra of subsets of X. Show that if $A \in \mathcal{A}$ and $A \neq \emptyset$ then A has infinitely many elements.
- (2) Let $\sigma(A)$ be the sigma algebra generated by A and let $\mathcal{P}(X)$ be the power set of X. Show that they are equal.

Question 3 [20 points] Let (X, \mathcal{A}, μ) be a measure space and let $f: X \to \overline{\mathbb{R}}$ be measurable. (Here, $\overline{\mathbb{R}}$ stands for \mathbb{R} with $\pm \infty$ included).

- (1) Suppose that the measure μ is finite. Show that the function f is integrable if and only if $\sum_{n>0} \mu(\{|f|>n\}) < \infty$.
- (2) Let $p \in [1, \infty)$ and assume that $f \in \mathcal{L}^p(X, \mathcal{A}, \mu)$. Prove that the measure μ restricted to $\{x \in X : |f(x)| \neq 0\}$ is σ -finite.

Question 4 [20 points] Let (X, \mathcal{A}, μ) be a measure space and suppose that $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are sequences where $f_n, g_n, f, g \in \mathcal{L}(X, \mathcal{A}, \mu)$ for each $n \in \mathbb{N}$ and

- i) $|f_n| \leq g_n$ for all $n \in \mathbb{N}$ and $f_n \to f$ pointwise as $n \to \infty$,
- ii) $g_n \to g$ pointwise as $n \to \infty$ and $\int g_n d\mu \to \int g d\mu$ as $n \to \infty$.

Prove that $\int f_n d\mu \to \int f d\mu$ as $n \to \infty$.

Question 5 [20 points] Let $f:[0,1]\to [0,\infty)$ be a positive Borel measurable function and suppose that there exists a number $c\in (0,\infty)$ such that

$$\int_0^1 f(t)^n dt = c \text{ for all } n \in \mathbb{N}.$$

Show that there exists $A \in \mathcal{B}([0,1])$ such that $f = \chi_A$ Lebesgue-a.e. Here χ_A is the indicator funtion of A.