Tentamen Manifolds 1, 19-1-2016 Exercise 1

- A. For any $p \in S^1 \subset \mathbb{R}^2$ write down a parameterization of S^1 around p and derive an explicit expression for $T_p S^1$.
- \checkmark Give an example of a vector field on S^1 that is non-zero at every point.
- Perform $\omega = dx \wedge dy$ on \mathbb{R}^2 and X any smooth vector field on S^1 . For any $p \in S^1$ and $v \in T_p S^1$ define $\eta(p)(v) = \omega(p)(X(p), v)$. Prove that η is a smooth 1-form on S^1 .
- \checkmark . Compute $d\eta$ for the 1-form from part c.

• Let $f: S^1 \to \mathbb{R}$ be the map defined by f(x, y) = xy. For your vector field X from part b, compute Df(p)(X(p)).

Exercise 2 In this exercise we denote the coordinates in \mathbb{R}^4 by x^1, x^2, x^3, x^4 . Define $\phi, \psi : \mathbb{R}^2 \to \mathbb{R}^4$ by $\phi(s,t) = (s, s+t, t, s-t)$ and $\psi(s,t) = (t, s, s, s)$ and $Im(\phi) = A$ and $Im(\psi) = B$. The plane \mathbb{R}^2 is oriented by $ds \wedge dt$.

A. Show that the 2-form $\eta = dx^1 \wedge dx^2$, when restricted to A defines an orientation on A and the same for B.

b. Define a map $F : A \to B$ by F(p,q,r,s) = (r,s,s,s). Is $F : A \to B$ orientation preserving with respect to the orientations of A and B chosen in part a?

Compute the curvature of $\pi(A) \subset \mathbb{R}^3$ in the point (0,0,0), where $\pi : \mathbb{R}^4 \to \mathbb{R}^3$ is defined by $\pi(x^1, x^2, x^3, x^4) = (x^2, x^3, x^4)$.

Exercise 3 Suppose A and B are oriented compact n-manifolds without boundary, B is connected and $f: A \to B$ is a smooth map.

From now on suppose A is the disjoint union of two connected subsets A_1, A_2 . Explain why A_1 and A_2 must also be compact smooth oriented *n*-manifolds.

6. Even though A is disconnected, define $deg(f) = \int_A f^* \omega$ where $\int_B \omega = 1$ for some $\omega \in \Lambda^n(B)$. Prove that deg(f) is independent of the choice of ω .

Now assume X is an oriented connected compact n + 1 manifold with boundary $A = A_1 \cup A_2$ and $F : X \to B$ is a smooth map. Show that $deg(F|_{A_1}) + deg(F|_{A_2}) = 0.$

Exercise 4

Consider two vector fields X, Y with non-degenerate zeros on S^{16} . What is Index(X) - Index(Y)? Explain your answer.

b. If M is a compact manifold, and $p, q, r \in M$ are distinct points, show that there exists a smooth function $f: M \to \mathbb{R}$ such that f(p) = 19, f(q) = 1 and f(r) = 2016.

JK #Markery = Volles" Index (X)

ook compact.