MEASURE THEORY AND INTEGRATION TEST, APRIL 12, 2018

(1) Let Ω be an infinite set and let

$$\mathcal{A} = \{A \in \Omega : A \text{ or } A^c \text{ is finite}\}.$$

Show that \mathcal{A} is an algebra. Is \mathcal{A} a σ -algebra?

(2) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space . Show that the implication

$$A_n \in \mathcal{A} \text{ and } A_n \downarrow A \implies \mu(A_n) \rightarrow \mu(A)$$

need not be true when $\mu(\Omega) = +\infty$.

- (3) Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be continuous. Show that the graph of f in \mathbb{R}^3 has Lebesgue measure 0.
 - (4) Compute the limit

$$\lim_{n\to\infty}\int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x}\lambda(dx)$$

(integrals are with respect to the Lebesgue measure on the corresponding domain.)