Examination for the course on

Random Walks

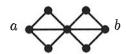
Teacher: Evgeny Verbitskiy

Wednesday, January 10, 2018, 14:00-17:00

- Write your name and student identification number on each piece of paper you hand in.
- All answers must come with a full explanation.
- The use of notes or lecture notes is not allowed.
- There are 8 questions. The total number of points is 100 (per question indicated in boldface). A score of ≥ 55 points is sufficient.
- (1) Consider simple random walk $(S_n)_{n\in\mathbb{Z}_+}$ on \mathbb{Z} .
 - (a) [5] Give definition of a stopping time.
 - (b) [5] Provide two examples of non-constant random variables: T_1 , which is a stopping time, and T_2 , which is not a stopping time. Prove your answer!
- (2) Denote by $\{S_n^{(d)}\}$ the simple random walk on the lattice \mathbb{Z}^d . Put

$$p_{2n}^{(d)} := \mathbb{P}[S_{2n}^{(d)} = 0], \quad n \in \mathbb{Z}_+.$$

- (a) [10] For d=1,2, derive asymptotic estimates of return probabilities $p_{2n}^{(d)}$. Hint: Try to show that $p_{2n}^{(2)} = \left(p_{2n}^{(1)}\right)^2$ for all n directly.
- (b) [5] Show that the statement " $p_{2n}^{(3)} = \left(p_{2n}^{(1)}\right)^3$ for all n" is false.
- (c) [5] Define a notion of recurrence of a random walk and formulate a criterion for recurrence.
- (d) [5] Using the results of (a), show that the simple random walk is recurrent in dimensions d = 1, 2.
- (3) [5] Compute the effective resistance between a and b of the following network of unit resistances:



(4) Let c_n denote the number of self-avoiding walks of length $n \in \mathbb{N}$ on the 'toblerone' graph (i.e., product of \mathbb{Z} and a triangle, in other words 3 copies of \mathbb{Z} that are sideways connected).

- (a) [5] Define the connectivity constant μ . State a sufficient condition for the existence of μ ?
- (b) [5] Compute c_3 .
- (c) [5] Derive exponential bounds for c_n , and use these bounds to show that $\mu \in (0, \infty)$.
- (5) (a) [5] Formulate the Dirichlet Principle.
 - (b) [5] Formulate the Thomson Principle.
- (6) [5] Explain the phenomenon of a phase transition using any of the relevant examples discussed in the course.
- (7) Standard Brownian motion.
 - (a) [5] Sketch construction of a standard Brownian motion $\{W_t\}$ on [0,1].
 - (b) [5] Sketch constructions of a standard d-dimensional Brownian motions $\{W_t\}$ on $[0, +\infty)$.
 - (c) [5] Let $(W(t))_{t\geq 0}$ be a standard Brownian motion on \mathbb{R} . Is

$$X_t = W_{3t} - W_{2t}$$

again a standard Brownian motion?

(d) [5] Let $(W(t))_{t\geq 0}$ and $(\widetilde{W}(t))_{t\geq 0}$ be independent standard Brownian motions on \mathbb{R} . For which values α and β , is the process

$$\widehat{W}_t = \alpha W_t + \beta \widetilde{W}_t,$$

is again a standard Brownian motion.

- (8) Suppose that the current price of a stock is $S_0 = 160$ euro, and that at the end of a single period of time its price is either $S_1 = 150$ euro or $S_1 = 175$ euro. A European call option on the stock is available with a strike price of K = 155 euro, expiring at the end of the period. It is also possible to borrow and lend money at a 6% interest rate.
 - (a) [5] Compute the arbitrage-free price of this option with the help of the Binomial Asset Pricing Model.
 - (b) [5] Suppose somebody is prepared to sell an option for 0.5 euro less than the the arbitrage-free price you have just determined. What is your course of action?